
System Identification Toolbox™ 7
Reference

Lennart Ljung

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

System Identification Toolbox™ Reference

© COPYRIGHT 1988–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2007 Online only Revised for Version 7.1 (Release 2007b)
March 2008 Online only Revised for Version 7.2 (Release 2008a)
October 2008 Online only Revised for Version 7.2.1 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.3.1 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Function Reference

1
Data Processing . 1-3

Linear Model Identification . 1-5

Nonlinear Black-Box Model Identification 1-8

ODE Parameter Estimation . 1-12

Recursive Techniques for Model Identification 1-12

Model Analysis . 1-13

Simulation and Prediction . 1-16

GUI . 1-17

Functions – Alphabetical List

2

Block Reference

3
Data Representation . 3-2

Linear Model Identification . 3-3

iii

Simulation and Prediction . 3-4

Blocks — Alphabetical List

4

Index

iv Contents

1

Function Reference

Data Processing (p. 1-3) Represent, process, analyze, and
manipulate data

Linear Model Identification (p. 1-5) Estimate time response, frequency
response, transfer function,
input-output polynomial, and
state-space models from time and
frequency domain data

Nonlinear Black-Box Model
Identification (p. 1-8)

Estimate nonlinear ARX and
Hammerstein-Wiener models

ODE Parameter Estimation (p. 1-12) Estimate parameters of linear and
nonlinear ordinary differential
or difference equations (grey-box
models)

Recursive Techniques for Model
Identification (p. 1-12)

Recursively estimate input-output
linear models, such as AR,
ARX, ARMAX, Box-Jenkins, and
Output-Error models

Model Analysis (p. 1-13) Validate and analyze models by
comparing model output, computing
parameter confidence intervals and
prediction errors, and getting advice
on estimated models

1 Function Reference

Simulation and Prediction (p. 1-16) Simulate and predict linear and
nonlinear model output, and
estimate initial states

GUI (p. 1-17) Start System Identification
Toolbox™ GUI and customize
preferences

1-2

Data Processing

Data Processing
advice Analysis and recommendations for

data or estimated linear polynomial
and state-space models

covf Estimate covariance functions for
time-domain iddata object

delayest Estimate time delay (dead time)
from data

detrend Subtract offset or trend from data
signals

diff Difference signals in iddata objects

fcat Concatenate frequency-domain
signals in data objects

feedback Identify possible feedback data

fft Transform iddata object to frequency
domain data

fselect Frequencies from frequency response
data

get Query properties of data and model
objects

getexp Specific experiments from
multiple-experiment data set

getTrend Data offset and trend information

iddata Time- or frequency-domain data

idfilt Filter data using user-defined
passbands, general filters, or
Butterworth filters

idfrd Frequency-response data or model

idinput Generate input signals

idresamp Resample time-domain data by
decimation or interpolation

1-3

1 Function Reference

ifft Transform iddata objects from
frequency to time domain

isreal Determine whether model
parameters or data values are
real

merge (iddata) Merge data sets into iddata object

misdata Reconstruct missing input and
output data

nkshift Shift data sequences

pexcit Level of excitation of input signals

plot Plot iddata or model objects

realdata Determine whether iddata is based
on real-valued signals

resample Resample time-domain data by
decimation or interpolation (requires
Signal Processing Toolbox™
software)

set Set properties of data and model
objects

size Dimensions of data and model
objects

timestamp Return date and time when object
was created or last modified

TrendInfo Offset and linear trend slope values
for detrending data

1-4

Linear Model Identification

Linear Model Identification
ar Estimate parameters of AR model

for scalar time series

armax Estimate parameters of ARMAX or
ARMA model

arx Estimate parameters of ARX or AR
model using least squares

arxdata ARX parameters from
multiple-output models with
variance information

arxstruc Compute and compare loss functions
for single-output ARX models

balred Reduce model order (requires
Control System Toolbox™ product)

bj Box-Jenkins (BJ) model estimation

c2d Transform linear model from
continuous to discrete time

cra Estimate impulse response using
prewhitened-based correlation
analysis

d2c Transform linear model from
discrete to continuous time

delayest Estimate time delay (dead time)
from data

etfe Estimate empirical transfer
functions and periodograms

feedback Identify possible feedback data

frd Convert idfrd objects to Control
System Toolbox frequency-response
LTI model

freqresp Frequency response data from linear
models

1-5

1 Function Reference

get Query properties of data and model
objects

idarx Multiple-output ARX polynomials,
impulse response, or step response
model

idfrd Frequency-response data or model

idgrey Linear ODE (grey-box model) with
known and unknown parameters

idmodel Superclass for linear models

idpoly Linear polynomial input-output
model

idproc Linear, low-order, continuous-time
transfer function

idss State-space model

impulse Plot impulse response with
confidence interval

init Set or randomize initial parameter
values

iv4 Estimate ARX model using
four-stage instrumental variable
method

ivar Estimate AR model using
instrumental variable method

ivstruc Loss functions for sets of ARX model
structures

ivx Estimate parameters of ARX model
using instrumental variable method
with arbitrary instruments

LTI Commands Apply Control System Toolbox
commands to linear model

merge Merge estimated models

1-6

Linear Model Identification

n4sid Estimate state-space models using
subspace method

nuderst Set step size for numerical
differentiation

oe Output-error (OE) model parameter
estimation

pem Estimate model parameters
using iterative prediction-error
minimization method

pexcit Level of excitation of input signals

polydata Parameters from single-input and
single-output polynomial model

selstruc Select model order for single-output
ARX models

set Set properties of data and model
objects

setpname Set mnemonic parameter names for
linear black-box model structures

setstruc Set matrix structure for idss model
objects

size Dimensions of data and model
objects

spa Estimate frequency response with
fixed frequency resolution using
spectral analysis

spafdr Estimate frequency response and
spectrum using spectral analysis
with frequency-dependent resolution

ss Convert linear models to Control
System Toolbox LTI models

ssdata State-space matrices from
parametric linear model

1-7

1 Function Reference

step Plot step response with confidence
interval

struc Generate model structure matrices
for single-input and single-output
systems

tf Convert linear models to
transfer-function Control System
Toolbox LTI models

tfdata Numerator and denominator of
transfer function from linear model

timestamp Return date and time when object
was created or last modified

zpk Convert linear model to Control
System Toolbox state-space LTI
models

zpkdata Zeros, poles, and gains of transfer
function from linear model

Nonlinear Black-Box Model Identification
addreg Add custom regressors to nonlinear

ARX model

customnet Custom nonlinearity estimator
for nonlinear ARX and
Hammerstein-Wiener models

customreg Custom regressor for nonlinear ARX
models

data2state(idnlarx) Map past input/output data to
current states of nonlinear ARX
model

1-8

Nonlinear Black-Box Model Identification

deadzone Class representing dead-zone
nonlinearity estimator for
Hammerstein-Wiener models

evaluate Value of nonlinearity estimator at
given input

findop(idnlarx) Compute operating point for
nonlinear ARX model

findop(idnlhw) Compute operating point for
Hammerstein-Wiener model

get Query properties of data and model
objects

getDelayInfo Get input/output delay information
for idnlarx model structure

getreg Regressor expressions and numerical
values in nonlinear ARX model

idnlarx Nonlinear black-box ARX model

idnlhw Nonlinear black-box
Hammerstein-Wiener model

idnlmodel Superclass for nonlinear models

init Set or randomize initial parameter
values

linapp Linear approximation of nonlinear
ARX and Hammerstein-Wiener
models for given input

linear Specify to estimate nonlinear ARX
model that is linear in (nonlinear)
custom regressors

linearize(idnlarx) Linearize nonlinear ARX model

linearize(idnlhw) Linearize Hammerstein-Wiener
model

1-9

1 Function Reference

neuralnet Class representing neural
network object created in Neural
Network Toolbox™ product for
estimating nonlinear ARX and
Hammerstein-Wiener models

nlarx Estimate nonlinear ARX models

nlhw Estimate Hammerstein-Wiener
models

operspec(idnlarx) Construct operating point
specification object for idnlarx
model

operspec(idnlhw) Construct operating point
specification object for idnlhw
model

pem Estimate model parameters
using iterative prediction-error
minimization method

poly1d Class representing single-variable
polynomial nonlinear estimator for
Hammerstein-Wiener models

polyreg Powers and products of standard
regressors

pwlinear Class representing piecewise-linear
nonlinear estimator for
Hammerstein-Wiener models

saturation Class representing saturation
nonlinearity estimator for
Hammerstein-Wiener models

set Set properties of data and model
objects

sigmoidnet Class representing sigmoid network
nonlinearity estimator for nonlinear
ARX and Hammerstein-Wiener
models

1-10

Nonlinear Black-Box Model Identification

treepartition Class representing binary-tree
nonlinearity estimator for nonlinear
ARX models

unitgain Specify absence of nonlinearities for
specific input or output channels in
Hammerstein-Wiener models

wavenet Class representing wavelet network
nonlinearity estimator for nonlinear
ARX and Hammerstein-Wiener
models

1-11

1 Function Reference

ODE Parameter Estimation
get Query properties of data and model

objects

getinit Values of idnlgrey model initial
states

getpar Parameter values and properties of
idnlgrey model parameters

idgrey Linear ODE (grey-box model) with
known and unknown parameters

idnlgrey Nonlinear ODE (grey-box model)
with unknown parameters

idnlmodel Superclass for nonlinear models

init Set or randomize initial parameter
values

pem Estimate model parameters
using iterative prediction-error
minimization method

set Set properties of data and model
objects

setinit Set initial states of idnlgrey model
object

setpar Set initial parameter values of
idnlgrey model object

Recursive Techniques for Model Identification
rarmax Estimate recursively parameters of

ARMAX or ARMA models

rarx Estimate parameters of ARX or AR
models recursively

1-12

Model Analysis

rbj Estimate recursively parameters of
Box-Jenkins models

roe Estimate recursively output-error
models (IIR-filters)

rpem Estimate general input-output
models using recursive
prediction-error minimization
method

rplr Estimate general input-output
models using recursive pseudolinear
regression method

segment Segment data and estimate models
for each segment

Model Analysis
advice Analysis and recommendations for

data or estimated linear polynomial
and state-space models

aic Akaike Information Criterion for
estimated model

arxdata ARX parameters from
multiple-output models with
variance information

balred Reduce model order (requires
Control System Toolbox product)

bode Compute and plot frequency
response magnitude and phase for
logarithmic frequencies

compare Compare model output and
measured output

1-13

1 Function Reference

ffplot Compute and plot frequency
response magnitude and phase for
linear frequencies

fpe Akaike Final Prediction Error for
estimated model

freqresp Frequency response data from linear
models

fselect Frequencies from frequency response
data

impulse Plot impulse response with
confidence interval

isreal Determine whether model
parameters or data values are
real

ivstruc Loss functions for sets of ARX model
structures

noisecnv Transform idmodel object with noise
channels to model with measured
channels only

nyquist Plot Nyquist curve of frequency
response with confidence interval

pe Prediction errors associated with
model and data set

plot Plot iddata or model objects

polydata Parameters from single-input and
single-output polynomial model

predict Predict output k steps ahead

predict(idnlarx) Predict output k steps ahead for
nonlinear ARX model

predict(idnlgrey) Predict output k steps ahead for
nonlinear ODE model

predict(idnlhw) Predict output k steps ahead for
Hammerstein-Wiener model

1-14

Model Analysis

present Displaymodel information, including
estimated uncertainty

pzmap Plot zeros and poles with confidence
interval

resid Compute and test model residuals
(prediction errors)

selstruc Select model order for single-output
ARX models

sim Simulate linear models with
confidence interval

sim(idnlarx) Simulate nonlinear ARX model

sim(idnlgrey) Simulate nonlinear ODE model

sim(idnlhw) Simulate Hammerstein-Wiener
model

simsd Simulate models with uncertainty
using Monte Carlo method

ssdata State-space matrices from
parametric linear model

step Plot step response with confidence
interval

tfdata Numerator and denominator of
transfer function from linear model

view Plot model characteristics using
Control System Toolbox LTI Viewer
GUI

zpkdata Zeros, poles, and gains of transfer
function from linear model

1-15

1 Function Reference

Simulation and Prediction
findstates(idmodel) Estimate initial states of linear

model from data

findstates(idnlarx) Estimate initial states of nonlinear
ARX model from data

findstates(idnlgrey) Estimate initial states of nonlinear
grey-box model from data

findstates(idnlhw) Estimate initial states of nonlinear
Hammerstein-Wiener model from
data

idmdlsim Simulate idmodel objects using
Simulink® software

predict Predict output k steps ahead

predict(idnlarx) Predict output k steps ahead for
nonlinear ARX model

predict(idnlgrey) Predict output k steps ahead for
nonlinear ODE model

predict(idnlhw) Predict output k steps ahead for
Hammerstein-Wiener model

retrend Add offsets or trends to data signals

sim Simulate linear models with
confidence interval

sim(idnlarx) Simulate nonlinear ARX model

sim(idnlgrey) Simulate nonlinear ODE model

sim(idnlhw) Simulate Hammerstein-Wiener
model

simsd Simulate models with uncertainty
using Monte Carlo method

1-16

GUI

GUI
ident Open System Identification Tool

GUI

midprefs Set directory for storing
idprefs.mat containing GUI
startup information

1-17

1 Function Reference

1-18

2

Functions – Alphabetical
List

addreg

Purpose Add custom regressors to nonlinear ARX model

Syntax m = addreg(model,regressors)
m = addreg(model,regressors,output)

Description m = addreg(model,regressors) adds custom regressors to a nonlinear
ARX model by appending the CustomRegressors model property. model
and m are idnalrx objects. For single-output models, regressors is
an object array of regressors you create using customreg or polyreg,
or a cell array of string expressions. For multiple-output models,
regressors is 1-by-ny cell array of customreg objects or 1-by-ny cell
array of cell arrays of string expressions. addreg adds each element of
the ny cells to the corresponding model output channel. If regressors
is a single regressor, addreg adds this regressor to all output channels.

m = addreg(model,regressors,output) adds regressors regressors
to specific output channels output of a multiple-output model. output
is a scalar integer or vector of integers, where each integer is the index
of a model output channel. Specify several pairs of regressors and
output values to add different regressor variables to the corresponding
output channels.

Examples Add regressors to a nonlinear ARX model as a cell array of strings:

% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);

% Create model with additional custom regressors:
m2 = addreg(m1,{'y1(t-2)^2';'u1(t)*y1(t-7)'})

% List all standard and custom regressors of m2:
getreg(m2)

Add regressors to a nonlinear ARX model as customreg objects:

% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);

% Create a model based on m1 with custom regressors:

2-2

addreg

r1 = customreg(@(x)x^2, {'y1'}, 2)
r2 = customreg(@(x,y)x*y, {'u1','y1'}, [0 7])
m2 = addreg(m1,[r1 r2]);

See Also customreg | getreg | nlarx | polyreg

How To • “Identifying Nonlinear ARX Models”

2-3

advice

Purpose Analysis and recommendations for data or estimated linear polynomial
and state-space models

Syntax advice(model)
advice(data)

Inputs model
Name of the idarx, idgrey, idpoly, idproc, or idss model
object. These model objects belong to the idmodel abstract class,
representing linear polynomial and state-space models.

data
Name of the iddata object.

Description advice(model) displays the following information about the estimated
model in the MATLAB® Command Window:

• Does the model capture essential dynamics of the system and the
disturbance characteristics?

• Is the model order higher than necessary?

• Is there potential output feedback in the validation data?

• Would a nonlinear ARX model perform better than a linear ARX
model?

advice(data) displays the following information about the data in
the MATLAB Command Window:

• What are the excitation levels of the signals and how does this affects
the model orders? See also pexcit.

• Does it make sense to remove constant offsets and linear trends from
the data? See also detrend.

• Is there an indication of output feedback in the data? See also
feedback.

2-4

advice

See Also detrend

feedback

iddata

pexcit

2-5

aic

Purpose Akaike Information Criterion for estimated model

Syntax am = aic(model)
am = aic(model1,model2,...)

Arguments model
Name of an idarx, idgrey, idpoly, idproc, idss, idnlarx,
idnlhw, or idnlgrey model object.

Description am = aic(model) returns a scalar value of the Akaike’s Information
Criterion (AIC) for the estimated model.

am = aic(model1,model2,...) returns a row vector containing AIC
values for the estimated models model1,model2,....

Remarks Akaike’s Information Criterion (AIC) provides a measure of model
quality by simulating the situation where the model is tested on a
different data set. After computing several different models, you can
compare them using this criterion. According to Akaike’s theory, the
most accurate model has the smallest AIC.

Note If you use the same data set for both model estimation and
validation, the fit always improves as you increase the model order and,
therefore, the flexibility of the model structure.

Akaike’s Information Criterion (AIC) is defined by the following
equation:

AIC V
d

N
= +log

2

where V is the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

The loss function V is defined by the following equation:

2-6

aic

V t tN N N
TN

= () ()()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑det , ,1

1
ε θ ε θ

where θN represents the estimated parameters.

For d<<N:

AIC V
d

N
= +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟log 1

2

Note AIC is approximately equal to log(FPE).

AIC is formally defined as the negative log-likelihood functionΛ ,
evaluated at the estimated parameters, plus the number of estimated
parameters. You can derive AIC from this definition, as follows:

If the disturbance source is Gaussian with the covariance matrix Λ , the
logarithm of the likelihood function is

L t t constT
N

N(,) (,) (,) log detθ ε θ ε θΛ Λ Λ= − − () +∑ −1
2

1

1
2

Maximizing this analytically with respect to Λ , and then maximizing
the result with respect to θ , gives

L const VNp N(,) log()θ Λ = + +2 2

where p is the number of outputs.

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See sections about the statistical
framework for parameter estimation and maximum likelihood method
and comparing model structures.

2-7

aic

See Also EstimationInfo

fpe

2-8

Algorithm Properties

Purpose Algorithm properties affecting estimation process for linear models

Syntax idprops idmodel algorithm
Model.algorithm.PropertyName='PropertyValue'

Description Algorithm is a property of the idmodel class that specifies the
estimation algorithm. The idmodel subclasses are used to define
various linear models, including idarx, idss, idpoly, idproc, and
idgrey. These models inherit the idmodel Algorithm property.

Note For a description of nonlinear model Algorithm property, see the
corresponding nonlinear model reference page.

Property names are not case sensitive. When you type a property
name, you only need to enter enough characters to uniquely identify
the property. The Algorithm fields can be accessed and modified as
for any structure using dot syntax. For example, you can access the
SearchMethod field by typing Model.Algorithm.SearchMethod.

Note You can use the get function or dot notation to fetch fields of
Algorithm as if they were the properties of the model itself. Similarly
you can use set or dot notation to set a particular field. This shortcut
access is available for the fields of Algorithm only (not for deeper level
struct fields such as Search or Threshold options). For example:

method = Model.SearchMethod;
Model.MaxIter = 100;

is equivalent to

get(Model, 'SearchMethod')
set(Model, 'maxiter', 100);

2-9

Algorithm Properties

When you create a new model by refining an existing model m, the
algorithm properties of m are inherited by the new model.

Note You can estimate a model with specific algorithm settings and
define a structure variable to store the algorithm values. For example:

model = n4sid(data,order)
myalg = model.Algorithm;
myalg.Focus='Simulation';
m = pem(data,model,'alg',myalg)

You can also specify the algorithm properties (except advanced
properties) as property-value pairs when creating the linear model
(using idpoly, idss, etc.) or when estimating them (using pem, n4sid,
armax, oe etc.).

Algorithm Properties

• Criterion: Specifies criterion used during minimization. Criterion
can have the following values:

- 'Det': Minimize det(’*)E E , where E represents the prediction
error. This is the optimal choice in a statistical sense and leads to
the maximum likelihood estimates in case nothing is known about
the variance of the noise. It uses the inverse of the estimated
noise variance as the weighting function. This is the default
criterion used for all models, except idnlgrey which uses 'Trace'
by default.

- 'Trace': Minimize the trace of the weighted prediction error
matrix trace(E'*E*W), where E is the matrix of prediction errors,
with one column for each output, and W is a positive semi-definite
symmetric matrix of size equal to the number of outputs. By
default, W is an identity matrix of size equal to the number of model
outputs (so the minimization criterion becomes trace(E'*E), or
the traditional least-sum-of-squared-errors criterion. You can

2-10

Algorithm Properties

specify the relative weighting of prediction errors for each output
using the Weighting field of the Algorithm property.

Note The difference between the two criteria is meaningful in
multiple-output cases only. In single-output models, the two criteria
are equivalent. Both the Det and Trace criteria are derived from a
general requirement of minimizing a weighted sum of squares of
prediction errors. The Det criterion can be interpreted as estimating
the covariance matrix of the noise source and using the inverse of
that matrix as the weighting. When using the Trace criterion, you
must specify the weighting using the Weighting property.

If you want to achieve better accuracy for a particular channel
in multiple-input multiple-output models, you should use
Trace with weighting that favors that channel. Otherwise it is
natural to use the Det criterion. When using Det, you can check
cond(model.NoiseVariance) after estimation. If the matrix is
ill-conditioned, it may be more robust to use the Trace criterion.
You can also use compare on validation data to check whether the
relative error for different channels corresponds to your needs or
expectations. Use the Trace criterion if you need to modify the
relative errors, and check model.NoiseVariance to determine what
weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.

• Focus: Defines how the errors e between the measured and the
modeled outputs are weighed at specific frequencies during the
minimization of the following loss function:

V ei
i

i= ∑λ 2

2-11

Algorithm Properties

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies. Focus can have the following
values:

- 'Prediction': (Default) Automatically calculates the weighting
function as a product of the input spectrum and the inverse of the
noise model. This minimizes the one-step-ahead prediction, which
typically favors fitting small time intervals (higher frequency
range). From a statistical-variance point of view, this is the
optimal weighting function. However, this method neglects the
approximation aspects (bias) of the fit. Might not result in a stable
model. Use 'Stability' when you want to ensure a stable model.

- 'Simulation': Estimates the model using the frequency
weighting of the transfer function that is given by the input
spectrum. Typically, this method favors the frequency range
where the input spectrum has the most power. In other words, the
resulting model will produce good simulations for inputs that have
the same spectra as used for estimation. For models that have no
disturbance model, there is no difference between 'Simulation'

and 'Prediction'. In this case, y Gu He= + with H=1, which
is equivalent to A=C=D=1 for idpoly models and K = 0 for idss
models.

For models that have a disturbance model, G is first estimated
with H=1, and then H is estimated using a prediction-error method

with a fixed estimated transfer function Ĝ . This guarantees a
stable transfer function G.

- 'Stability': This weighting is the same as for 'Prediction',
but the model is forced to be stable. Use only when you know the
system is stable. In some cases, forcing the model to be stable
can result in a bad model.

- Enter a row vector or a matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

2-12

Algorithm Properties

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

- Enter any SISO linear filter in any of the following ways:

A single-input-single-output (SISO) idmodel object.

An ss, tf, or zpk model from the Control System Toolbox product.

Using the format {A,B,C,D}, which specifies the state-space
matrices of the filter.

Using the format {numerator, denominator}, which specifies the
numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function from input
to output, G. To obtain a good model fit for a specific frequency
range, you must choose the filter with a passband in this range.
After estimating G, the algorithm computes the disturbance
model using a prediction-error method and keeping the estimated
transfer function fixed (similar to the 'Simulation' case). For a
model that has no disturbance model, the estimation result is the
same if you first prefilter the data using idfilt.

- For frequency-domain data only, enter a column vector of weights
for 'Focus'. This vector must have the same size as length of the
frequency vector of the data set, Data.Frequency. Each input and
output response in the data is multiplied by the corresponding
weight at that frequency.

• Maxsize: A positive integer, specified such that the input-output
data is split into segments where each contains fewer than
MaxSize elements. Setting MaxSize can improve computational
performance. The default value of MaxSize is 'Auto', which uses the
M-file idmsize to set the value. You can edit this file to optimize
computational speed on a particular computer. MaxSize does not
affect the numerical properties of the estimate except when you use
InitialState = 'backcast' for frequency-domain data. In this

2-13

Algorithm Properties

case, the frequency ranges where backcasting takes place might
depend on MaxSize and affects estimates.

• FixedParameter: Vector of integers containing the indices of
parameters that are not estimated and remain fixed at nominal or
initial values. Parameter indices refer to their position in the list,
stored in the property 'ParameterVector'. You can also specify
parameter names as values from the property 'PName'. To specify
fixed parameters using parameter names, enter Fixedparameter as
a cell array of strings. For example, to fix parameters with names
'a' and 'b', type m.FixedParameter = {'a','b','c'}. Strings can
contain wildcards, such as '*' to specify the automatic completion of
a string, or '?' to represent an arbitrary character. For example, to
fix three parameters in a disturbance model that start with 'k', such
as 'k1', 'k2','k3', use FixedParameter = {'k*'}. For structured
state-space models, you can fix and free parameters by specifying
structure matrices, such as As and Bs (see idss).

Note By default, the property 'PName' is empty. Use setpname to
assign default parameter names. For example, m = setpname(m).

• Weighting: Positive semi-definite symmetric matrix W to use as
weighting for minimization of the trace criterion trace(E'*E*W).
Weighting can be used to specify relative importance of outputs in
multiple-input multiple-output models (or reliability of corresponding
data) by specifying W as a diagonal matrix of non-negative values.
Weighting is not useful in single-input single-output models. By
default, Weighting is the identity matrix of size equal to the number
of model outputs, assigning equal importance to each output during
estimation.

• Display: Specifies what information displays in the MATLAB
Command Window about the iterative search during estimation.

- 'Off': Displays no information.

- 'On': Displays the loss-function values for each iteration.

2-14

Algorithm Properties

- 'Full': Displays the same information as 'On' and also include
the current parameter values and the search direction (except
when the Advanced SSParameterization model property is set
to 'Free' for idss models and the list of parameters can change
between iterations).

• LimitError: Specifies when to adjust the weight of large errors
from quadratic to linear. Default value is 0. Errors larger than
LimitError times the estimated standard deviation have a linear
weight in the criteria. The standard deviation is estimated robustly
as the median of the absolute deviations from the median and
divided by 0.7. (See the section about choosing a robust norm in [2].)
LimitError = 0 disables the robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
LimitError is set to zero.

Note You can estimate the model with the default value
of LimitError (zero) and plot the prediction errors using
pe(data.model). If the resulting plot shows occasional large values,
repeat the estimation with model.Algorithm.LimitError set to a
value between 1 and 2.

• MaxIter: Specifies the maximum number of iterations during
loss-function minimization. The iterations stop when MaxIter
is reached or another stopping criterion is satisfied, such as
the Tolerance. The default value of MaxIter is 20. Setting
MaxIter = 0 returns the result of the startup procedure. Use
EstimationInfo.Iterations to get the actual number of iterations
during an estimation.

• Tolerance: Specifies the minimum percentage difference (divided
by 100) between the current value of the loss function and its
expected improvement after the next iteration: When the percentage
of expected improvement is less than Tolerance, the iterations
are stopped. Default value is 0.01. The estimate of the expected

2-15

Algorithm Properties

loss-function improvement at the next iteration is made based on the
Gauss-Newton vector computed for the current parameter value.

• SearchMethod: The search method used for iterative parameter
estimation. It can take one of the following values:

- 'gn': The subspace Gauss-Newton direction.
Singular values of the Jacobian matrix less than
GnPinvConst*eps*max(size(J))*norm(J) are discarded when
computing the search direction, where J is the Jacobian matrix.
The Hessian matrix is approximated by JTJ. If there is no
improvement along this direction, the gradient direction is also
tried.

- 'gna': An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness (IFAC World congress, Prague
2005). Eigenvalues less than gamma*max(sv) of the Hessian are
neglected , where sv are the singular values of the Hessian.
The Gauss-Newton direction is computed in the remaining
subspace. gamma has the initial value InitGnaTol (see below) and
is increased by the factor LmStep each time the search fails to
find a lower value of the criterion in less than 5 bisections. It is
decreased by the factor 2*LmStep each time a search is successful
without any bisections.

- 'lm': Uses the Levenberg-Marquardt method. This means that
the next parameter value is -pinv(H+d*I)*grad from the previous
one, where H is the Hessian, I is the identity matrix, and grad is
the gradient. d is a number that is increased until a lower value
of the criterion is found.

- 'Auto': A choice among the above is made in the algorithm. This
is the default choice.

- 'lsqnonlin': Uses lsqnonlin optimizer from Optimization
Toolbox™ software. You must have Optimization Toolbox installed
to use this option. This search method can only handle the Trace
criterion.

2-16

Algorithm Properties

• Advanced: Structure that specifies advanced algorithm options and
has the following fields:

- Search: Uses the following fields to specify options for the iterative
search:

1 GnPinvConst: Must be a positive real value. Specifies
that singular values of the Jacobian that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps are discarded when
computing the search direction using the 'gn' method. Default
value is 1e4.

2 InitGnaTol: The initial value of gamma in the gna search
algorithm. See SearchMethod for description of gna. Default is
10^-4.

3 LmStep: The size of the Levenberg-Marquardt step. The next value
of the search-direction length d in the Levenberg-Marquardt
method is LmStep times the previous one. Default is 2.

4 StepReduction: For search directions other than the
Levenberg-Marquardt direction, the step is reduced by the factor
StepReduction after each iteration. Default is 2.

5 MaxBisection: The maximum number of bisections used by the
line search along the search direction. Default is 25.

6 LmStartValue: The starting value of search-direction length d in
the Levenberg-Marquardt method. Default is 0.001.

7 RelImprovement: The iterations are stopped if the relative
improvement of the criterion is less than RelImprovement. Default
is RelImprovement = 0. This property is different from Tolerance
in that it uses the actual improvement of the loss function, as
opposed to the expected improvement.

- Threshold: Contains fields with thresholds for several tests:

1 Sstability: Specifies the location of the rightmost pole to test the
stability of continuous-time models. A model is considered stable
when its rightmost pole is to the left of Sstability. Default is 0.

2-17

Algorithm Properties

2 Zstability: Specifies the maximum distance of all poles from
the origin to test stability of discrete-time models. A model is
considered stable if all poles are within the distance Zstability
from the origin. Default is 1+sqrt(eps).

- AutoInitialState: Specifies when to automatically estimate the
initial state. When InitialState = 'Auto', the initial state is
estimated when the ratio of the prediction-error norm with a zero
initial state to the norm with an estimated initial state exceeds
AutoInitialState. Default is 1.05.

Properties Relevant to Estimation of n4sid, State-Space (idss)
Models

Note These properties apply to n4sid. Since pem commonly uses n4sid
to initialize a model for iterative estimation, these properties affect
the results of pem too.

• N4Weight: Calculates the weighting matrices used in the
singular-value decomposition step of the algorithm and has three
possible values:

- 'Auto': (Default) Automatically chooses between 'MOESP' and
'CVA' .

- 'MOESP': Uses the MOESP algorithm by Verhaegen.

- 'CVA': Uses the canonical variable algorithm by Larimore.
For more information about setting this property, see the n4sid
reference page.

• N4Horizon: Determines the forward and backward prediction
horizons used by the algorithm. Enter a row vector with three
elements: N4Horizon=[r sy su], where r is the maximum forward
prediction horizon; that is, the algorithm uses up to r step-ahead
predictors. sy is the number of past outputs, and su is the number
of past inputs used for predictions. For an exact definition of these
integers, see the section about subspace methods in [2], where they

2-18

Algorithm Properties

are called r, s1, and s2. These numbers can have a substantial
influence on the quality of the resulting model and there are no
simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix
means that the algorithm tries each row of 'N4Horizon' and selects
the value that gives the best (prediction) fit to the data. Choosing
the best row is not available when you also specify to select the best
model order. When you specify one column in 'N4Horizon', the
interpretation is r=sy=su. The default choice is 'N4Horizon' =
'Auto', which uses an Akaike Information Criterion (AIC) for the
selection of sy and su.

Note For algorithm properties of nonlinear models, see the reference
pages for idnlarx, idnlhw, and idnlgrey.

References [1] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice
Hall, Englewood Cliffs, N.J., 1983. See the chapter about iterative
minimization.

[2] Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See the chapter about computing
the estimate.

See Also armax

bj

EstimationInfo

idpoly

idss

n4sid

oe

pem

2-19

ar

Purpose Estimate parameters of AR model for scalar time series

Syntax m = ar(y,n)
[m,refl] = ar(y,n,approach,window)
[m,refl] = ar(y,n,approach,window,'P1',V1,...,'PN',VN)

Arguments y
iddata object that contains the time-series data (one output
channel).

n
Scalar that specifies the order of the model you want to estimate
(the number of A parameters in the AR model).

approach
Lets you choose the algorithm for computing the least squares AR
model from the following options:

• 'burg': Burg’s lattice-based method. Solves the lattice filter
equations using the harmonic mean of forward and backward
squared prediction errors.

• 'fb': (Default) Forward-backward approach. Minimizes the
sum of a least- squares criterion for a forward model, and the
analogous criterion for a time-reversed model.

• 'gl': Geometric lattice approach. Similar to Burg’s method,
but uses the geometric mean instead of the harmonic mean
during minimization.

• 'ls': Least-squares approach. Minimizes the standard sum of
squared forward-prediction errors.

• 'yw': Yule-Walker approach. Solves the Yule-Walker
equations, formed from sample covariances.

window
Lets you specify how to use information about the data outside the
measured time interval (past and future values). The following
windowing options are available:

2-20

ar

• 'now': (Default) No windowing. This value is the default
except when the approach argument is 'yw'. Only measured
data is used to form regression vectors. The summation in the
criteria starts at the sample index equal to n+1.

• 'pow': Postwindowing. Missing end values are replaced with
zeros and the summation is extended to time N+n (N is the
number of observations).

• 'ppw': Pre- and postwindowing. Used in the Yule-Walker
approach.

• 'prw': Prewindowing. Missing past values are replaced with
zeros so that the summation in the criteria can start at time
equal to zero.

'P1',V1,...,'PN',VN
Pairs of property names and property values can include any of
the following.

Property Name Property Value Description

'Covariance' • 'None'
Suppresses the
calculation of
the covariance
matrix.

• []

Empty.

• Square matrix
containing
covariance
values of size
equal to the
length of the
parameter vector

Specifies
calculation of
uncertainties
in parameter
estimates.

2-21

ar

Property Name Property Value Description

'MaxSize' Integer See Algorithm
Properties for the
description.

'Ts' Real positive
number

Sets the sampling
time and overrides
the sampling time
of y.

Description
Note Use for scalar time series only. For multivariate data, use arx.

m = ar(y,n) returns an idpoly model m.

[m,refl] = ar(y,n,approach,window) returns an idpoly model m
and the variable refl. For the two lattice-based approaches, 'burg'
and 'gl', refl stores the reflection coefficients in the first row, and the
corresponding loss function values in the second row. The first column
of refl is the zeroth-order model, and the (2,1) element of refl is
the norm of the time series itself.

[m,refl] = ar(y,n,approach,window,'P1',V1,...,'PN',VN)
returns an idpoly model m and the variable refl using additional
windowing criteria.

Remarks The AR model structure is given by the following equation:

A q y t e t() () ()=

AR model parameters are estimated using variants of the least-squares
method. The following table summarizes the common names for
methods with a specific combination of approach and window argument
values.

2-22

ar

Method Approach and Windowing

Modified Covariance Method (Default) Forward-backward
approach and no windowing.

Correlation Method Yule-Walker approach, which
corresponds to least squares plus
pre- and postwindowing.

Covariance Method Least squares approach with no
windowing. arx uses this routine.

Examples Given a sinusoidal signal with noise, compare the spectral estimates of
Burg’s method with those found from the forward-backward approach
and no-windowing method on a Bode plot.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
mfb = ar(y,4);
bode(mb,mfb)

References Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice
Hall, Englewood Cliffs, 1987, Chapter 8.

See Also Algorithm Properties

arx

EstimationInfo

etfe

idpoly

ivar

pem

2-23

ar

spa

step

2-24

armax

Purpose Estimate parameters of ARMAX or ARMA model

Syntax m = armax(data,orders)
m = armax(data,orders,'P1',V1,...,'PN',VN)
m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk)

Arguments data
iddata object that contains the input-output data.

orders
Vector of integers, specified using the format

orders = [na nb nc nk]

For multiple-input systems, nb and nk are row vectors where the
ith element corresponds to the order and delay associated with
the ith input.

When data is a time series, which has no input and one output,
then

orders = [na nc]

Tip When refining an estimated model mi, set the model orders
as follows:

orders = mi

'na',na,'nb',nb,'nc',nc,'nk',nk
'na', 'nb', and 'nc' are orders of the ARMAX model. nk is the
delay. na, nb, nc, and nk are the corresponding integer values.

'P1',V1,...,'PN',VN
Pairs of property names and property values can include any of
the following idmodel properties:

2-25

armax

'Focus', 'InitialState', 'Display', 'MaxIter', 'Tolerance',
'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for more
information.

Description
Note armax only supports time-domain data with single or multiple
inputs and single output. For frequency-domain data, use oe. For the
multiple-output case, use ARX or a state-space model (see n4sid and
pem).

m = armax(data,orders) returns an idpoly model m with estimated
parameters and covariances (parameter uncertainties). Estimates the
parameters using the prediction-error method and specified orders.

m = armax(data,orders,'P1',V1,...,'PN',VN) returns an idpoly
model m. Use additional property-value pairs to specify the estimation
algorithm properties.

m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk) returns an
idpoly model m with orders and delays specified as parameter-value
pairs.

Remarks The ARMAX model structure is

y t a y t a y t n

b u t n b u t n n
n a

k n k b

a

b

() () ()

() (

+ − + + − =

− + + − − +
1

1

1

1

…

…))

() () ()

+

− + + − + c e t c e t n e tn cc1 1 …

A more compact way to write the difference equation is

A q y t B q u t n C q e tk() () () () () ()= − +

where

2-26

armax

• y t()— Output at time t .

• na — Number of poles.

• nb — Number of zeroes plus 1.

• nc — Number of C coefficients.

• nk — Number of input samples that occur before the input affects
the output, also called the dead time in the system. For discrete
systems with no dead time, there is a minimum 1–sample delay

because the output depends on the previous input and nk = 1 .

• y t y t na() ()− −1 … — Previous outputs on which the current output
depends.

• u t n u t n nk k b() ()− − − +… 1 — Previous and delayed inputs on which
the current output depends.

• e t e t nc() ()− −1 … — White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and
nk is the delay. q is the delay operator. Specifically,

A q a q a qn
n

a
a() = + + +− −1 1

1 …

B q b b q b qn
n

b
b() = + + +− − +

1 2
1 1…

C q c q c qn
n

c
c() = + + +− −1 1

1 …

If data is a time series, which has no input channels and one output
channel, then armax calculates an ARMA model for the time series

A q y t e t() () ()=

2-27

armax

In this case

orders = [na nc]

Algorithm An iterative search algorithm with the properties 'SearchMethod',
'MaxIter', 'Tolerance', and 'Advanced' minimizes a robustified
quadratic prediction error criterion. The iterations are terminated
either when MaxIter is reached, or when the expected improvement
is less than Tolerance, or when a lower value of the criterion cannot
be found. You can get information about the search criteria using
m.EstimationInfo.

When you do not specify initial parameter values for the iterative search
in orders, they are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the property
LimitError and on the estimated standard deviation of the residuals
from the initial parameter estimate. It is not recalculated during the
minimization.

To ensure that only models corresponding to stable predictors are tested,
the algorithm performs a stability test of the predictor. Generally, both

C q() and F q() (if applicable) must have all zeros inside the unit circle.

Minimization information is displayed on the screen when the property
'Display' is 'On' or 'Full'. With 'Display' ='Full', both the
current and the previous parameter estimates are displayed in
column-vector form, listing parameters in alphabetical order. Also,
the values of the criterion function are given and the Gauss-Newton
vector and its norm are also displayed. With 'Display' = 'On' only
the criterion values are displayed.

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See chapter about computing the
estimate.

2-28

armax

See Also Algorithm Properties

EstimationInfo

idpoly

pem

2-29

arx

Purpose Estimate parameters of ARX or AR model using least squares

Syntax m = arx(data,orders)
m = arx(data,orders,'P1',V1,...,'PN',VN)
m = arx(data,'na',na,'nb',nb,'nc',nc,'nk',nk)

Arguments data
An iddata object, an frd object, or an idfrd
frequency-response-data object.

orders
Vector of integers, specified using the format

orders = [na nb nk]

For multiple-input systems, nb and nk are row vectors where the
ith element corresponds to the order and delay associated with
the ith input.

When data is a time series, which has no input and one output,
then

orders = [na]

Note When refining an estimated model mi, set the model orders
as follows:

orders = mi

'na',na,'nb',nb,'nc',nc,'nk',nk
'na', 'nb', and 'nc' are orders of the ARMAX model. nk is the
delay. na, nb, nc, and nk are the corresponding integer values.

2-30

arx

'P1',V1,...,'PN',VN
Pairs of property names and property values can include any of
the following idmodel properties:

'Focus', 'InitialState', 'Display', 'MaxIter', 'Tolerance',
'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for more
information.

Description
Note arx does not support multiple-output continuous-time models.
Use state-space model structure instead. When the true noise term

e t e t nc() ()− −1 … in the ARX model structure is not white noise and na
is nonzero, the model estimate is incorrect. In this case, use armax,
bj, iv4, or oe.

m = arx(data,orders) returns a model m as an idpoly or idarx
object with estimated parameters and covariances (parameter
uncertainties). For single-output data, the model is an idpoly object.
For multiple-output data, the model is an idarx object. Uses the
least-squares method and specified orders.

m = arx(data,orders,'P1',V1,...,'PN',VN) returns a model m. Use
additional property-value pairs to specify the estimation algorithm
properties.

m = arx(data,'na',na,'nb',nb,'nc',nc,'nk',nk) returns a model
m with orders and delays specified as parameter-value pairs.

Remarks arx estimates the parameters of the ARX model structure:

y t a y t a y t n

b u t n b u t n n
n a

k n k b

a

b

() () ()

() (

+ − + + − =

− + + − − +
1

1

1

1

…

…)) ()+ e t

2-31

arx

The parameters na and nb are the orders of the ARX model, and nk
is the delay.

• y t()— Output at time t .

• na — Number of poles.

• nb — Number of zeroes plus 1.

• nk — Number of input samples that occur before the input affects
the output, also called the dead time in the system. For discrete
systems with no dead time, there is a minimum 1–sample delay

because the output depends on the previous input and nk = 1 .

• y t y t na() ()− −1 … — Previous outputs on which the current output
depends.

• u t n u t n nk k b() ()− − − +… 1 — Previous and delayed inputs on which
the current output depends.

• e t e t nc() ()− −1 … — White-noise disturbance value.

A more compact way to write the difference equation is

A q y t B q u t n e tk() () () () ()= − +

q is the delay operator. Specifically,

A q a q a qn
n

a
a() = + + +− −1 1

1 …

B q b b q b qn
n

b
b() = + + +− − +

1 2
1 1…

Time Series Models

For time-series data that contains no inputs, one output and orders =
na, the model has AR structure of order na.

2-32

arx

The AR model structure is

A q y t e t() () ()=

Multiple Inputs and Single-Output Models

For multiple-input systems, nb and nk are row vectors where the ith
element corresponds to the order and delay associated with the ith
input.

y t A y t A y t A y t na

B u t B u t
na() () () ()

() (
+ − + − + + − =

+
1 2

0 1

1 2 …
 −− + + − +1) () ()… B u t nb e tnb

Multioutput Models

For models with multiple inputs and multiple outputs, na, nb, and nk
contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction
error covariance matrix, or the norm

e t e tT

t

N
() ()

=
∑

1

To transform this to an arbitrary quadratic norm using a weighting
matrix Lambda

e t e tT

t

N
() ()Λ−

=
∑ 1

1

use the syntax

m = arx(data,orders,'NoiseVariance', Lambda)

You can use arx to refine an existing model m_initial as an argument.

m = arx(data,m_initial)

2-33

arx

The new model m uses the orders and the weighting matrix for the
prediction errors from m_initial. You can further modify m_initial
by adding a list of property name and value pairs as arguments.
This is especially useful when some parameters must be fixed using
'FixedParameter' property.

Continuous-Time Models

For models with one output, continuous-time models can be estimated
from continuous-time frequency-domain data. In this case, na is the
number of estimated denominator coefficients and nb is number of
estimated numerator coefficients.

Note For continuous-time models, omit the delay parameter nk because
it has no meaning in this case. Because estimating continuous-time
ARX models often produces bias, you might get better results by using
the oe method.

For example, when na = 4, nb = 2, the model structure is:

G s
b s b

s a s a s a s a
() = +

+ + + +
1 2

4
1

3
2

2
3 4

Tip When using continuous-time data, limit the fit to a smaller
frequency range using the 'Focus' idmodel property:

m = arx(datac,[na nb],'focus',[0 wh])

Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured
signals are never required in the predictors. Therefore, there is no need
to estimate initial conditions.

2-34

arx

For frequency-domain data, it might be necessary to adjust the data by
initial conditions that support circular convolution.

You can set the property 'InitialState' to one of the following values:

• 'zero' — No adjustment.

• 'estimate'— Perform adjustment to the data by initial conditions
that support circular convolution.

• 'auto' — Automatically choose between 'zero' and 'estimate'
based on the data.

See Algorithm Properties for more information on model properties.

Algorithm QR factorization solves the overdetermined set of linear equations that
constitutes the least-squares estimation problem.

The regression matrix is formed so that only measured quantities are
used (no fill-out with zeros). When the regression matrix is larger
than MaxSize, data is segmented and QR factorization is performed
iteratively on these data segments.

Examples This example generates input data based on a specified ARX model, and
then uses this data to estimate an ARX model.

A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(m0, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);

See Also Algorithm Properties

EstimationInfo

2-35

arx

ar

idarx

idpoly

iv4

ivar

ivx

pem

2-36

arxdata

Purpose ARX parameters from multiple-output models with variance
information

Syntax [A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

Arguments m
An idarx model object.

Also accepts single-output idpoly models with an underlying
ARX structure with orders nc=nd=nf=0.

Description [A,B] = arxdata(m) returns A and B as 3-D arrays.

Suppose ny is the number of outputs (the dimension of the vector y(t))
and nu is the number of inputs.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

where k=0,1,...,na.

B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

A(0) is always the identity matrix. The leading entries in B equal to
zero, which means there are no delays in the model.

Note For a time series, B = [].

[A,B,dA,dB] = arxdata(m) returns A and B matrices, and dA and dB
as the estimated standard deviations of A and B, respectively.

2-37

arxdata

Remarks A and B are 2-D or 3-D arrays and are returned in the standard
multivariable ARX format (see idarx), describing the model.

y t A y t A y t A y t na

B u t B u t
na() () () ()

() (
+ − + − + + − =

+
1 2

0 1

1 2 …
 −− + + − +1) () ()… B u t nb e tnb

where Ak and Bk matrices have dimensions ny-by-ny and ny-by-nu,
respectively. ny is the number of outputs (the dimension of the vector
y(t)) and nu is the number of inputs.

See Also idarx

idpoly

2-38

arxstruc

Purpose Compute and compare loss functions for single-output ARX models

Syntax V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)

Arguments ze
Estimation data set can be iddata or idfrd object.

zv
Validation data set can be iddata or idfrd object.

NN
Matrix defines the number of different ARX-model structures.
Each row of NN is of the form:

nn = [na nb nk]

maxsize
Specified maximum data size. See Algorithm Properties for
an explanation.

Description
Note Use arxstruc for single-output systems only. arxstruc supports
both single-input and multiple-input systems.

V = arxstruc(ze,zv,NN) returns V, which contains the loss functions
in its first row. The remaining rows of V contain the transpose of NN, so
that the orders and delays are given just below the corresponding loss
functions. The last column of V contains the number of data points in ze.

V = arxstruc(ze,zv,NN,maxsize) uses the additional specification
of the maximum data size.

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

2-39

arxstruc

The output argument V is best analyzed using selstruc. The selection
of a suitable model structure based on the information in v is normally
done using selstruc.

Remarks Each of ze and zv is an iddata object containing output-input data.
Frequency-domain data and idfrd objects are also supported. Models
for each of the model structures defined by NN are estimated using the
data set ze. The loss functions (normalized sum of squared prediction
errors) are then computed for these models when applied to the
validation data set zv. The data sets ze and zv need not be of equal size.
They could, however, be the same sets, in which case the computation
is faster.

Examples This example uses the simulation data from a second-order idpoly
model with additive noise. The data is split into two parts, where one
part is the estimation data and the other is the validation data. You
select the best model by comparing the output of models with orders
ranging between 1 and 5 with the validating data. All models have an
input-to-output delay of 1.

% Create an ARX model for generaing data:
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
% Generate a random input signal:
u = iddata([],idinput(400,'rbs'));
e = iddata([],0.1*randn(400,1));
% Simulate the output signal from the model m0:
y = sim(m0, [u e]);
z = [y,u]; % analysis data
NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
m = arx(z,nn);

2-40

arxstruc

See Also Algorithm Properties

arx

idpoly

ivstruc

selstruc

struc

2-41

balred

Purpose Reduce model order (requires Control System Toolbox product)

Syntax MRED = balred(M)
MRED = balred(M,ORDER,'DisturbanceModel','None')

Description This function reduces the order of any model M given as an idmodel
object. The resulting reduced-order model, MRED, is an idss model.

The function requires routines from the Control System Toolbox
product.

ORDER: The desired order (dimension of the state-space representation).
If ORDER = [], which is the default, a plot shows how the diagonal
elements of the observability and controllability Gramians of a balanced
realization decay with the order of the representation. You are then
prompted to select an order based on this plot. The idea is that such a
small element has a negligible influence on the input-output behavior
of the model. We recommend that you choose an order such that only
large elements in these matrices are retained.

'DisturbanceModel': If the property DisturbanceModel is set to
'None', then an output-error model MRED is produced: that is, one with
the Kalman gain K equal to zero. Otherwise (default), the disturbance
model is also reduced.

The function recognizes whether M is a continuous- or discrete-time
model and performs the reduction accordingly. The resulting model,
MRED, is similar to M in this respect.

There are several options for how the reduction is performed: AbsTol,
RelTol, Offset, Elimination.

Algorithm The function uses the balred algorithm in Control System Toolbox. The
plot, in case ORDER = [], shows the vector g returned by balreal.

Examples Build a high-order multivariable ARX model, reduce its order to 3, and
compare the frequency responses of the original and reduced models:

M = arx(data,[4*ones(3,3),4*ones(3,2),ones(3,2)]);

2-42

balred

MRED = balred(M,3);
bode(M,MRED)

Use the reduced-order model as an initial condition for a third-order
state-space model.

M2 = pem(data,MRED);

See Also balreal

2-43

bj

Purpose Box-Jenkins (BJ) model estimation

Syntax m = bj(data,[nb nc nd nf nk])
m = bj(data,[nb nc nd nf nk],'PropertyName',PropertyValue)
m = bj(data,m_initial)

Description m = bj(data,[nb nc nd nf nk]) estimates Box-Jenkins model
parameters and their covariances from input-output data. m is an
idpoly object. data is a time-domain, single-output iddata object.
nb, nc, nd, and nf are orders of the B, C, D, and F polynomials,
respectively. nk is the input delay, specified as the number of samples.
Orders and delay are scalar for single-input data, and row vectors for
multiple-input data with the same size as the number of input channels.

m = bj(data,[nb nc nd nf nk],'PropertyName',PropertyValue)
estimates Box-Jenkins model using algorithm options specified by
idpoly property name-value pairs. See Algorithm Properties.

m = bj(data,m_initial) refines previously estimated model
m_initial, which is an idpoly object.

bj does not support frequency-domain and multiple-output data.

Definitions The general Box-Jenkins model structure is:

y t
B q
F q

u t nk
C q
D q

e ti

i
i i

i

nu
()

()
()

()
()

()= −() +
=
∑

1

where nu is the number of input channels.

The orders of Box-Jenkins model are defined as follows:

2-44

bj

Examples Estimate parameters of a single-input single-output Box-Jenkins model:

% Load SISO data.
load iddata1;

% Estimate model parameters
mbj = bj(z1,[2 2 2 2 1])

Estimate parameters of a multi-input single-output Box-Jenkins model:

% Load MISO data.
load iddata8;

% Estimate model parameters
mbj = bj(z8,[[2 1 1] [2 1 2] 1 1 [5 10 15]])

Estimate parameters of a single-input single-output Box-Jenkins model
using estimation algorithm properties:

% Generate estimation data using simulation.
B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
m0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(m0,[u e]);
z = [y u];

% Estimate model parameters.
mbj_i = bj(z,[2 2 2 2 1]);

% Repeat the estimation with more iterations.
mbj = bj(z,mbj_i,'MaxIter',50)

% View the estimation results.

2-45

bj

mbj.EstimationInfo
% Compare initial and refined model parameters.

compare(z,mbj,mbj_i)

References Ljung, L. System Identification: Theory for the User, 2nd ed., Upper
Saddle River, NJ, Prentice-Hall, 1999. See the chapter on computing
the estimate.

See Also idmodel | oe | idpoly | n4sid | pem | Algorithm Properties |
EstimationInfo

Tutorials • “Tutorial – Identifying Linear Models Using the Command Line”

How To • “Identifying Input-Output Polynomial Models”

• “Algorithms for Estimating Polynomial Models”

2-46

bode

Purpose Compute and plot frequency response magnitude and phase for
logarithmic frequencies

Syntax bode(m)
bode(m,w)
bode(m('noise')
bode(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = bode(m)
[mag,phase,w,sdmag,sdphase] = bode(m)

Description bode(m) plots a Bode plot for the model m, which can be an idpoly,
idss, idarx, idgrey, or idfrd object. This frequency response is a
function of logarithmic frequencies in radians per unit time (stored as
the TimeUnit model property). Default frequency values are computed
from the model dynamics. For time series spectra, phase plots are
omitted. For MIMO models, press Enter to view the next plot in the
sequence of different I/O channel pairs, annotated using the InputNames
and OuputNames model properties.

bode(m,w) plots a Bode plot at specified frequencies w in radians per
unit time, which can be

• A vector of values.

• {wmin,wmax}, which specifies 100 logarithmically spaced frequency
values ranging from a minimum value wmin and a maximum value
wmax.

• {wmin,wmax,np}, which specifies np logarithmically spaced frequency
values.

Note For idfrd models, you cannot specify individual frequencies
and can only limit the frequencies range for the internally stored
frequencies using {wmin,wmax}.

2-47

bode

bode(m('noise') plots a Bode plot of the output noise spectra when
the model contains noise spectrum information.

bode(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill') plots a
Bode plot for several models. sd specifies the confidence region as a
positive number that represents the number of standard deviations.
The argument 'fill' indicates that the confidence region is color filled.
mode = 'same' displays all I/O channels in the same plot. Set ap =
'A' to show only amplitude plots, or ap = 'P' to show only phase plots.

[mag,phase,w] = bode(m) computes the magnitude mag and
phase values of the frequency response, which are 3-D arrays with
dimensions (number of outputs)-by-(number of inputs)-by-(length of
w). w specifies the frequency values for computing the response even
if you did not specify it as an input. For SISO systems, mag(1,1,k)
and phase(1,1,k) are the magnitude and phase (in degrees) at the
frequency w(k). For MIMO systems, mag(i,j,k) is the magnitude of
the frequency response at frequency w(k) from input j to output i, and
similarly for phase(i,j,k). When m is a time series, mag is its power
spectrum and phase is zero.

[mag,phase,w,sdmag,sdphase] = bode(m) computes the standard
deviations of the magnitude sdmag and the phase sdphase. sdmag is an
array of the same size as mag, and sdphase is an array of the same
size as phase.

See Also etfe

ffplot

freqresp

idfrd

nyquist

spa

spafdr

2-48

compare

Purpose Compare model output and measured output

Syntax compare(data,m);
compare(data,m,k)
compare(data,m,k,'Samples',sampnr,'InitialState',init,'OutputPlots
',Yplots)
compare(data,m1,m2,...,mN)
compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN')
[yh,fit,x0] = compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN',k)

Description data is the output-input data in the usual iddata object format. data
can also be an idfrd object with frequency-response data.

compare computes the output yh that results when the model m is
simulated with the input u. m can be any idmodel or idnlmodel model
object. The result is plotted together with the corresponding measured
output y. The percentage of the output variation that is explained by
the model

fit = 100*(1 - norm(yh - y)/norm(y-mean(y)))

is also computed and displayed. For multiple-output systems, this is
done separately for each output. For frequency-domain data (or in
general for complex valued data) the fit is still calculated as above, but
only the absolute values of y and yh are plotted.

When the argument k is specified, the k step-ahead prediction of y
according to the model m are computed instead of the simulated output.
In the calculation of , the model can use outputs up to time :

, , … (and inputs up to the current time t). The
default value of k is inf, which gives a pure simulation from the input
only. Note that for frequency-domain data, only simulation (k = inf)
is allowed, and for time-series data (no input) only prediction (k not
inf) is possible.

2-49

compare

Property Name/Property Value Pairs

The optional property name/property value pairs 'Samples'/sampnr,
'InitialState'/init, and 'OutputPlots'/Yplots can be given in
any order.

The argument Yplots can be a cell array of strings. Only the outputs
with OutputName in this array are plotted, while all are used for the
necessary computations. If Yplots is not specified, all outputs are
plotted.

The argument sampnr indicates that only the sample numbers in this
row vector are plotted and used for the calculation of the fit. The whole
data record is used for the simulation/prediction.

The argument init determines how to handle initial conditions in the
models:

• init = 'e' (for 'estimate') estimates the initial conditions for
best fit.

• init = 'm' (for 'model') uses internally stored initial state of the
model.

• init = 'z' (for 'zero') uses zero initial conditions.

• init = x0, where x0 is a column vector of the same size as the state
vector of the models, uses x0 as the initial state.

• init = 'e' is the default.

Several Models

When several models are specified, as in compare(data,m1,m2,...,mN),
the plots show responses and fits for all models. In that case data
should contain all inputs and outputs that are required for the different
models. However, some models might correspond to subselections of
channels and might not need all channels in data. In that case the
proper handling of signals is based on the InputNames and OutputNames
of data and the models.

2-50

compare

With compare(data,m1,'PlotStyle1',...mN,'PlotStyle2'), the
color, line style, and/or marker can be specified for the curves associated
with the different models. The markers are the same as for the regular
plot command. For example,

compare(data,m1,'g_*',m2,'r:')

If data contains several experiments, separate plots are given for the
different experiments. In this case sampnr, if specified, must be a cell
array with as many entries as there are experiments.

Arguments When output arguments [yh,fit,x0] = compare(data,m1,..,mN)
are specified, no plots are produced.

yh is a cell array of length equal to the number of models. Each cell
contains the corresponding model output as an iddata object.

fit is, in the general case, a 3-D array with fit(kexp,kmod,ky)
containing the fit (computed as above) for output ky, model kmod, and
experiment kexp.

x0 is a cell array, such that x0{kmod} is the estimated initial state for
model number kmod. If data is multiexperiment, X0{kmod} is a matrix
whose column number kexp is the initial state vector for experiment
number kexp.

Examples Split the data record into two parts. Use the first one for estimating a
model and the second one to check the model’s ability to predict six
steps ahead.

ze = z(1:250);
zv = z(251:500);
m= armax(ze,[2 3 1 0]);
compare(zv,m,6);
compare(zv,m,6,'Init','z') % No estimation of

% the initial state.

2-51

compare

See Also findstates(idmodel)

pe

predict

sim

2-52

covf

Purpose Estimate covariance functions for time-domain iddata object

Syntax R = covf(data,M)
R = covf(data,M,maxsize)

Description data is an iddata object and M is the maximum delay -1 for which
the covariance function is estimated. The routine is intended for
time-domain data only.

Let z contain the output and input channels

where y and u are the rows of data.OutputData and data.InputData,
respectively, with a total of nz channels.

R is returned as an nz2 -by- M matrix with entries

where is the jth row of z, and missing values in the sum are replaced
by zero.

The optional argument maxsize controls the memory size as explained
under Algorithm Properties.

The easiest way to describe and unpack the result is to use

reshape(R(:,k+1),nz,nz) = E z(t)*z'(t+k)

Here ' is complex conjugate transpose, which also explains how complex
data is handled. The expectation symbol E corresponds to the sample
means.

2-53

covf

Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier
transform technique is applied. Otherwise, straightforward summing
is used.

See Also iddata

spa

2-54

cra

Purpose Estimate impulse response using prewhitened-based correlation
analysis

Syntax cra(data);
[ir,R,cl] = cra(data,M,na,plot);
cra(R);

Description data is the output-input data given as an iddata object. The routine is
intended for time-domain data only.

The routine only handles single-input-single-output data pairs. (For the
multivariate case, apply cra to two signals at a time, or use impulse.)
cra prewhitens the input sequence; that is, cra filters u through a
filter chosen so that the result is as uncorrelated (white) as possible.
The output y is subjected to the same filter, and then the covariance
functions of the filtered y and u are computed and graphed. The
cross correlation function between (prewhitened) input and output is
also computed and graphed. Positive values of the lag variable then
correspond to an influence from u to later values of y. In other words,
significant correlation for negative lags is an indication of feedback
from y to u in the data.

A properly scaled version of this correlation function is also an estimate
of the system’s impulse response ir. This is also graphed along with
99% confidence levels. The output argument ir is this impulse response
estimate, so that its first entry corresponds to lag zero. (Negative lags
are excluded in ir.) In the plot, the impulse response is scaled so that
it corresponds to an impulse of height 1/T and duration T, where T is
the sampling interval of the data.

The output argument R contains the covariance/correlation information
as follows:

• The first column of R contains the lag indices.

• The second column contains the covariance function of the (possibly
filtered) output.

2-55

cra

• The third column contains the covariance function of the (possibly
prewhitened) input.

• The fourth column contains the correlation function. The plots can
be redisplayed by cra(R).

The output argument cl is the 99% confidence level for the impulse
response estimate.

The optional argument M defines the number of lags for which the
covariance/correlation functions are computed. These are from -M to M,
so that the length of R is 2M+1. The impulse response is computed from
0 to M. The default value of M is 20.

For the prewhitening, the input is fitted to an AR model of order na.
The third argument of cra can change this order from its default value
na = 10. With na = 0 the covariance and correlation functions of the
original data sequences are obtained.

plot: plot = 0 gives no plots. plot = 1 (the default) gives a plot of
the estimated impulse response together with a 99% confidence region.
plot = 2 gives a plot of all the covariance functions.

An often better alternative to cra is the functions impulse and step,
which use a high-order FIR model to estimate the impulse response.

Examples Compare a second-order ARX model’s impulse response with the one
obtained by correlation analysis.

ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')

2-56

cra

See Also impulse

step

2-57

customnet

Purpose Custom nonlinearity estimator for nonlinear ARX and
Hammerstein-Wiener models

Syntax C=customnet(H)
C=customnet(H,PropertyName,PropertyValue)

Description customnet is an object that stores a custom nonlinear estimator with a
user-defined unit function. This custom unit function uses a weighted
sum of inputs to compute a scalar output.

Construction C=customnet(H) creates a nonlinearity estimator object with a
user-defined unit function using the function handle H. H must point
to a function of the form [f,g,a] = gaussunit(x), where f is the
value of the function, g=df/dx, and a indicates the unit function active
range. Name the function gaussunit.m. g is significantly nonzero in
the interval [-a a]. Hammerstein-Wiener models require that your
custom nonlinearity have only one input and one output.

C=customnet(H,PropertyName,PropertyValue) creates a nonlinearity
estimator using property-value pairs defined in “customnet Properties”
on page 2-59.

Remarks Use customnet to define a nonlinear function y F x= () , where y is
scalar and x is an m-dimensional row vector. The unit function is based
on the following function expansion with a possible linear term L:

F x x r PL a f x r Qb c() ()= − + −() +() +

+
1 1 1 …

 aa f x r Qb c dn n n−() +() +

where f is a unit function that you define using the function handle H.

P and Q are m-by-p and m-by-q projection matrices, respectively. The
projection matrices P and Q are determined by principal component
analysis of estimation data. Usually, p=m. If the components of x in
the estimation data are linearly dependent, then p<m. The number of
columns of Q, q, corresponds to the number of components of x used
in the unit function.

2-58

customnet

When used to estimate nonlinear ARX models, q is equal to the size of
the NonlinearRegressors property of the idnlarx object. When used
to estimate Hammerstein-Wiener models, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, a, and c are scalars.

L is a p-by-1 vector.

b represents q-by-1 vectors.

The function handle of the unit function of the custom net must have the
form [f,g,a] = function_name(x). This function must be vectorized,
which means that for a vector or matrix x, the output arguments f and
g must have the same size as x and be computed element-by-element.

customnet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)
% Get value of NumberOfUnits property
C.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

set(C, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.

2-59

customnet

Property Name Description

NumberOfUnits Integer specifies the number of nonlinearity units in the
expansion.
Default=10.

For example:

customnet(H,'NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'—Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero.

For example:

customnet(H,'LinearTerm','on')

Parameters A structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• Dilation: q-by-1 matrix containing the values b_k.

• Translation: 1-by-n vector containing the values c_k.

• OutputCoef: n-by-1 vector containing the values a_k.

• OutputOffset: scalar d.

Typically, the values of this structure are set by estimating a
model with a customnet nonlinearity.

UnitFcn Stores the function handle that points to the unit function.

2-60

customnet

Algorithm customnet uses an iterative search technique for estimating
parameters.

Examples Define custom unit function and save it in gaussunit.m:

[f, g, a] = GAUSSUNIT(x)
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])

% The unit function must be "vectorized": for
% a vector or matrix x, the output arguments f and g
% must have the same size as x,
% computed element-by-element.

% GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1

g = - 2*x.*f;
a = 0.2;

end

Use custom networks in nlarx and nlhw model estimation commands:

% Define handle to example unit function.
H = @gaussunit;
% Estimate nonlinear ARX model using
% Gauss unit function with 5 units.
m = nlarx(Data,Orders,customnet(H,'NumberOfUnits',5));

See Also evaluate | nlarx | nlhw

How To • “Identifying Nonlinear ARX Models”

2-61

customnet

• “Identifying Hammerstein-Wiener Models”

2-62

customreg

Purpose Custom regressor for nonlinear ARX models

Syntax C=customreg(Function,Variables)
C=customreg(Function,Variables,Delays,Vectorized)

Description customreg class represents arbitrary functions of past inputs and
outputs, such as products, powers, and other MATLAB expressions of
input and output variables.

You can specify custom regressors in addition to or instead of standard
regressors for greater flexibility in modeling your data using nonlinear
ARX models. For example, you can define regressors like tan(u(t-1)),
u(t-1)2, and u(t-1)*y(t-3).

For simpler regressor expressions, specify custom regressors directly
in the GUI or in the nlarx estimation command. For more complex
expressions, create a customreg object for each custom regressor and
specify these objects as inputs to the estimation. Regardless of how you
specify custom regressors, the toolbox represents these regressors as
customreg objects. Use getreg to list the expressions of all standard
and custom regressors in your model.

A special case of custom regressors involves polynomial combinations
of past inputs and outputs. For example, it is common to capture
nonlinearities in the system using polynomial expressions like y(t−1)2,
u(t−1)2, y(t−2)2, y(t−1)*y(t−2), y(t−1)*u(t−1), y(t− 2)*u(t−1). At the
command line, use the polyreg command to generate polynomial-type
regressors automatically by computing all combinations of input and
output variables up to a specified degree. polyreg produces customreg
objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors
as the CustomRegressors property. You can list all custom regressors
using m.CustomRegressors, where m is a nonlinear ARX model. For
MIMO models, to retrieve the rth custom regressor for output ky, use
m.CustomRegressors{ky}(r).

Use the Vectorized property to specify whether to compute custom
regressors using vectorized form during estimation. If you know

2-63

customreg

that your regressor formulas can be vectorized, set Vectorized to 1
to achieve better performance. To better understand vectorization,
consider the custom regressor function handle z=@(x,y)x^2*y. x
and y are vectors and each variable is evaluated over a time grid.
Therefore, z must be evaluated for each (xi,yi) pair, and the results
are concatenated to produce a z vector:

for k = 1:length(x)
z(k) = x(k)^2*y(k)

end

The above expression is a nonvectorized computation and tends
to be slow. Specifying a Vectorized computation uses MATLAB
vectorization rules to evaluate the regressor expression using matrices
instead of the FOR-loop and results in faster computation:

% ".*" indicates element-wise operation
z=(x.^2).*y

Construction C=customreg(Function,Variables) specifies a custom regressor for
a nonlinear ARX model. C is a customreg object that stores custom
regressor. Function is a handle or string representing a function
of input and output variables. Variables is a cell array of strings
that represent the names of model inputs and outputs in the function
Function. Each input and output name must coincide with the strings
in the InputName and OutputName properties of the corresponding
idnlarx object. The size of Variables must match the number of
Function inputs. For multiple-output models with p outputs, the
custom regressor is a p-by-1 cell array or an array of customreg
object, where the kyth entry defines the custom regressor for output
ky. You must add these regressors to the model by assigning the
CustomRegressors model property or by using addreg.

C=customreg(Function,Variables,Delays,Vectorized) create a
custom regressor that includes the delays corresponding to inputs or
outputs in Arguments. Delays is a vector of positive integers that
represent the delays of Variables variables (default is 1 for each
vector element). The size of Delays must match the size of Variables.

2-64

customreg

Vectorized value of 1 uses MATLAB vectorization rules to evaluate
the regressor expression Function. By default, Vectorized value is 0
(false).

Properties After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)
% Get value of Arguments property
C.Arguments

You can also use the set function to set the value of particular
properties. For example:

set(C,'Vectorized',1)

Property Name Description

Function Function handle or string representing a function of standards
regressors.

For example:

cr = @(x,y) x*y

Variables Cell array of strings that represent the names of model input
and output variables in the function Function. Each input and
output name must coincide with the strings in the InputName
and OutputName properties of the idnlarx object—the model
for which you define custom regressors. The size of Variables
must match the number of Function inputs.

For example, Variables correspond to {'y1','u1'} in:

C = customreg(cr,{'y1','u1'},[2 3])

2-65

customreg

Property Name Description

Delays Vector of positive integers representing the delays of
Variables. The size of Delays must match the size of
Arguments.

Default: 1 for each vector element.

For example, Delays are [2 3] in:

C = customreg(cr,{'y1','u1'},[2 3])

Vectorized Assignable values:

• 0 (default)—Function is not computed in vectorized form.

• 1—Function is computed in vectorized form when called
with vector arguments.

Examples Define custom regressors as a cell array of strings:

load iddata1
m = nlarx(z1,[2 2 1]);
C={'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'};
% u1 and y1 are system input and output

m.CustomRegressors = C;
m=pem(z1,m)

Define custom regressors directly in the estimation command nlarx:

m = nlarx(data,[na nb nk],'linear',...
'CustomRegressors',...
{'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});

Define custom regressors as an object array of customreg objects:

2-66

customreg

cr1=@(x,y) x*sin(y);
cr2=@(x) x^3;
C=[customreg(cr1,{'u' 'y'},[1 3]),...

customreg(cr2,{'u'},2)];
m=addreg(m,C);

Use vectorization rules to evaluate regressor expression during
estimation:

C = customreg(@(x,y) x*sin(y),{'u' 'y'},[1 3])
set(C,'Vectorized',1)
m = nlarx(data,[na nb nk],'sigmoidnet','CustomReg',C)

See Also addreg | getreg | idnlarx | nlarx | polyreg

How To • “Identifying Nonlinear ARX Models”

2-67

c2d

Purpose Transform linear model from continuous to discrete time

Syntax md = c2d(mc,T)
md = c2d(mc,T,method)
[md,G] = c2d(mc,T,method)

Description mc is a continuous-time model such as any idmodel object (idgrey,
idproc, idpoly, or idss). md is the model that is obtained when it is
sampled with sampling interval T.

method = 'zoh' (default) makes the translation to discrete time under
the assumption that the input is piecewise constant (zero-order hold).

method = 'foh' assumes the input to be piecewise linear between the
sampling instants (first-order hold).

When you have the Control System Toolbox product installed, the
following methods are also supported: 'tustin', 'prewarp', and
'matched'. In these cases the covariance matrix is not transformed.

Note that the innovations variance of the continuous-time model
is interpreted as the intensity of the spectral density of the noise
spectrum. The noise variance in md is thus given as /T.

idpoly and idss models are returned in the same format. idgrey
structures are preserved if their CDMfile property is equal to 'cd'.
Otherwise they are transformed to idss objects. idproc models are
returned as idgrey objects.

For idpoly models, the covariance matrix is translated by the use of
numerical derivatives. The step sizes used for the differentiation are
given by the function nuderst. For idss, idproc, and idgrey models,
the covariance matrix is not translated, but covariance information
about the input-output properties is included in md. To inhibit the
translation of covariance information (which may take some time), use
c2d(mc,T,'covariance','none').

The output argument G is a matrix that transforms the initial state x0
of mc to the initial state of md as

2-68

c2d

X0d=G * [X0; u(0)],

where u(0) is the input at time 0. For idproc models, the state
variables correspond to those of idgrey(mc). For idpoly models, G
is returned as the empty matrix.

Examples Define a continuous-time system and study the poles and zeros of the
sampled counterpart.

mc = idpoly(1,1,1,1,[1 1 0],'Ts',0);
md = c2d(mc,0.5);
pzmap(md)

See Also d2c

2-69

data2state(idnlarx)

Purpose Map past input/output data to current states of nonlinear ARX model

Syntax X = data2state(MODEL,IOSTRUCT)
X = data2state(MODEL,DATA)

Description X = data2state(MODEL,IOSTRUCT)maps the input and output samples
in IOSTRUCT to the current states of MODEL, X. For a definition of the
states of idnlarx models, see “Definition of idnlarx States” on page
2-189. The data in IOSTRUCT is interpreted as past samples of data, so
that the returned state values must be interpreted as values at the
time immediately after the time corresponding to the last (most recent)
sample in the data.

X = data2state(MODEL,DATA) maps the input and output samples
from DATA to the current states, X, of the model.

Input • MODEL: idnlarx model.

• IOSTRUCT: Structure with fields Input and Output. Samples in
IOSTRUCT must be in the order of increasing time (the last row of
values corresponds to the most recent time). Each field contains
data samples corresponding to the past input and output of MODEL
respectively.

- Input: Matrix of NU columns, where NU is the number of inputs.
The number of rows can be equal to either of the following:

• Maximum input delay in MODEL (maximum across all input
variables).

• 1 to specify steady-state (constant) input values.

- Output: Matrix of NY columns, where NY is the number of outputs.
The number of rows can be equal to either of the following:

• Maximum input delay in MODEL (maximum across all output
variables).

• 1 to specify steady-state (constant) output values.

2-70

data2state(idnlarx)

• DATA: iddata object containing data samples. Samples in DATA must
be in the order of increasing time (the last row of values corresponds
to the most recent time). The number of samples in DATA must be
greater than or equal to the maximum delay in the model across
all input and output variables.

Note To determine maximum delay in each input and output channel
of MODEL, use the getDelayInfo command. For more information, see
the getDelayInfo reference page.

Output X is the state vector of MODEL corresponding to the time after the most
recent sample in the input data (IOSTRUCT or DATA).

Examples In this example you determine the current state of an idnlarx model.

1 Load your data and create a data object.

load motorizedcamera;
z = iddata(y,u,0.02,'Name','Motorized Camera', ...

'TimeUnit','s');

2 Estimate an idnlarx model from the data. The model has 6 inputs
and 2 outputs.

mw1 = nlarx(z,[ones(2,2),ones(2,6),ones(2,6)],wavenet);

3 Compute the maximum delays across all output variables in mw1.

MaxDelays = getDelayInfo(mw1);

4 Represent the past input and output samples:

IOData = struct('Input', ...
rand(max(MaxDelays(3+1:end)),6),...

'Output', ...

2-71

data2state(idnlarx)

rand(max(MaxDelays(1:3)),2));

5 Compute the current states of mw1 based on the past data in
IOSTRUCT.

X = data2state(mw1,IOData)

The previous command computes the state vector.

Note You can specify constant input levels with scalar values
(10,20,30,40,50,60) for the input variables by setting
IOSTRUCT.Input = [10, 20, 30, 40, 50, 60] instead of a matrix of
values.

See Also findop(idnlarx)

findstates(idnlarx)

getDelayInfo

2-72

deadzone

Purpose Class representing dead-zone nonlinearity estimator for
Hammerstein-Wiener models

Syntax s=deadzone(ZeroInterval,I)

Description deadzone is an object that stores the dead-zone nonlinearity estimator
for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=deadzone(ZeroInterval,I) creates a dead-zone nonlinearity
estimator object, initialized with the zero interval I.

Use evaluate(d,x) to compute the value of the function defined by
the deadzone object d at x.

Remarks Use deadzone to define a nonlinear function y F x= () , where F is a
function of x and has the following characteristics:

a x b F x
x a F x x a
x b

≤ < =
< = −
≥

()
()

0

 F x x b() = −

y and x are scalars.

Properties You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List ZeroInterval property value
get(d)
d.ZeroInterval

You can also use the set function to set the value of particular
properties. For example:

2-73

deadzone

set(d, 'ZeroInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

Property Name Description

ZeroInterval 1-by-2 row vector that specifies the initial zero interval of the
nonlinearity.
Default=[NaN NaN].

For example:

deadzone('ZeroInterval',[-1.5 1.5])

Examples Use deadzone to specify the dead-zone nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,deadzone([-1 1]),[]);

The dead-zone nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

See Also nlhw

2-74

delayest

Purpose Estimate time delay (dead time) from data

Syntax nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

Description Data is an iddata object containing the input-output data. It can also be
an idfrd object defining frequency-response data. Only single-output
data can be handled.

nk is returned as an integer or a row vector of integers, containing the
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different
delays:

The integer na is the order of the A polynomial (default 2). nb is a row
vector of length equal to the number of inputs, containing the order(s) of
the B polynomial(s) (default all 2).

nkmin and nkmax are row vectors of the same length as the number of
inputs, containing the smallest and largest delays to be tested. Defaults
are nkmin = 0 and nkmax = nkmin+20.

If nb, nkmax, and/or nkmin are entered as scalars in the multiple-input
case, all inputs will be assigned the same values.

maxtest is the largest number of tests allowed (default 10,000).

2-75

detrend

Purpose Subtract offset or trend from data signals

Syntax data_d = detrend(data)
data_d = detrend(data,Type)
[data_d,T] = detrend(data,Type)
data_d = detrend(data,1,brkp)

Description data_d = detrend(data) subtracts the mean value from each
time-domain or time-series signal data. data_d and data are iddata
objects.

data_d = detrend(data,Type) subtracts a mean value from each
signal when Type = 0, a linear trend (least-squares fit) when Type =
1, or a trend specified by a TrendInfo object when Type = T.

[data_d,T] = detrend(data,Type) stores the trend information as a
TrendInfo object T.

data_d = detrend(data,1,brkp) subtracts a piecewise linear
trend at one or more breakpoints brkp. brkp is a data index where
discontinuities between successive linear trends occur. When brkp
contains breakpoints that match the time vector, detrend subtracts a
continuous piecewise linear trend. You cannot store piecewise linear
trend information as an output argument.

Examples Subtract mean values from input and output signals and store the
trend information:

% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling interval of 0.08 sec.
data=iddata(y2,u2,0.08)
% Plot data on a time plot. Data has a nonzero mean.
plot(data)
% Remove the mean from the data.
[data_d,T] = detrend(data,0)
% Plot detrended data on the same plot.
hold on

2-76

detrend

plot(data_d)

Remove specified offset from input and output signals:

% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling time of 0.08 sec.
data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends.
T = getTrend(data)
% Assign offset values to the TrendInfo object.
T.InputOffset=5;
T.OutputOffset=5;
% Subtract offset from the data.
data_d = detrend(data,T)
% Plot detrended data on the same plot.
hold on
plot(data_d)

Subtract several linear trends that connect at three breakpoints [30
60 90]:

data = detrend(data,1,[30 60 90]);
% [30 60 90] are data indexes where breakpoints occur.

Subtract a mean value from the input signal and a V-shaped trend
from the output signal, such that the V peak occurs at the breakpoint
value of 119:

zd1 = z(:,:,[]); zd2 = z(:,[],:);
zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];

See Also getTrend | retrend | TrendInfo

How To • “Handling Offsets and Trends in Data”

2-77

diff

Purpose Difference signals in iddata objects

Syntax zdi = diff(z)
zdi = diff(z,n)

Description z is a time-domain iddata object. diff(z) and diff(z,n) apply this
command to each of the input/output signals in z.

2-78

d2c

Purpose Transform linear model from discrete to continuous time

Syntax mc = d2c(md)
mc = d2c(md,method)
mc = d2c(md,'CovarianceMatrix',cov,'InputDelay',inpd)

Description The discrete-time model md, given as any idmodel object, is
converted to a continuous-time counterpart mc. The covariance
matrix of the parameters in the model is also translated using the
Gauss approximation formula and numerical derivatives of the
transformation. The step sizes in the numerical derivatives are
determined by the function nuderst. To inhibit the translation of the
covariance matrix and save time, enter among the input arguments
(...,'CovarianceMatrix,'None,....)) (any abbreviations will do).

method is one of the input intersample behaviors 'zoh' (zero-order hold)
or 'foh' (first-order hold). If method is not specified, the InterSample
behavior of the data from which md was estimated is used.

When you haveControl System Toolbox installed, the following methods
are also supported: 'tustin', 'prewarp', and 'matched'. In these
cases no translation of the covariance matrix takes place.

If the discrete-time model contains pure time delays, that is, ,
then these are first removed before the transformation is made.
These delays are appended as pure time delay (dead time) to the
continuous-time model as the property InputDelay. To have the time
delay approximated by a finite-dimensional continuous system, enter
among the input arguments (...,'InputDelay',0,...).

If the noise variance is in md, and its sampling interval is T, then the
continuous-time model has an indicated level of noise spectral density
equal to T .

While idpoly and idss models are returned in the same format,
idarx models are returned as idss models mc. The reason is that the
transformation does not preserve the special structure of idarx. The
idgrey structures are preserved if their CDMfile property is equal to
cd. Otherwise they are transformed to idss objects.

2-79

d2c

Note The transformation from discrete to continuous time is not
unique. d2c selects the continuous-time counterpart with the slowest
time constants consistent with the discrete-time model. The lack of
uniqueness also means that the transformation can be ill-conditioned
or even singular. In particular, poles on the negative real axis, in the
origin, or in the point 1, are likely to cause problems. Interpret the
results with care.

Examples Transform an identified model to continuous time and compare the
frequency responses of the two models.

m = n4sid(data,3)
mc = d2c(m);
bode(m,mc,'sd',3)

Note that you can include the transformation to continuous time in the
n4sid command by specifying the model to be continuous time.

mc = n4sid(data,3,'Ts',0)

See Also c2d

nuderst

2-80

EstimationInfo

Purpose Information about linear model estimation results

Syntax m.EstimationInfo
m.es
m.es.DataLength, etc

Description EstimationInfo for linear models is a structure whose fields give
information about the results of model estimation. Depending on
whether it is an estimated parametric idmodel or an estimated
frequency response idfrd, EstimationInfo contains different fields.

Note For a description of nonlinear model EstimationInfo property,
see the corresponding nonlinear model reference page.

idmodel Case

The model structure will contain the properties ParameterVector,
CovarianceMatrix, and NoiseVariance, which are all calculated in the
estimation process (see the reference page for idmodel). In addition,
EstimationInfo contains the following fields:

• Status: Information whether the model has been estimated, or
modified after being estimated.

• Method: Name of the estimation command that produced the model.

• LossFcn: Value of the identification criterion at the estimate.
Normally equal to the determinant of the covariance matrix of the
prediction errors, that is, the determinant of NoiseVariance. Note
that the loss function for the minimization might be different due to
LimitError. The value of the nonrobustified loss function is always
stored in LossFcn.

• FPE: Akaike’s Final Prediction Error, defined as
LossFcn *(1+d/N}/(1-d/N), where d is the number of
estimated parameters and N is the length of the data record.

2-81

EstimationInfo

• DataName: Name of the data set from which the model was estimated.
This is equal to the property name of the iddata object. If this was
not defined, the name of the iddata variable is used.

• DataLength: Length of the data record.

• DataTs: Sampling interval of the data.

• DataDomain: 'Time' or 'Frequency', depending on the data domain.

• DataInterSample: Intersample behavior of the data from which the
model was estimated. This equals the property InterSample of the
iddata object. (See iddata.)

• WhyStop: For models that have been estimated by iterative search.
The stopping rule that caused the iterations to terminate. Assumes
values such as'MaxIter reached', 'No improvement possible
along the search vector', or 'Near (local) minimum'. The
latter means that the expected improvement is less than Tolerance
(see Algorithm Properties).

• UpdateNorm: Norm of the Gauss-Newton vector at the last iteration.

• LastImprovement: Relative improvement of the criterion value at the
last iteration.

• Iterations: Number of iterations used in the search.

• InitialState: Option actually used when
Model.InitialState = 'auto'.

• N4Weight: For n4sid estimates, or estimates that have been
initialized by n4sid: the actual value of N4Weight used.

• N4Horizon: For n4sid estimates, or estimates that have been
initialized by n4sid: the actual value of N4Horizon used. See n4sid
and Algorithm Properties.

idfrd Case

If the idfrd model is obtained from an estimated parametric model,

g = idfrd(Model)

2-82

EstimationInfo

g.EstimationInfo is the same as Model.EstimationInfo as described
above.

For an idfrd model that has been estimated from etfe, spa, or spafdr,
EstimationInfo contains the following fields:

• Status: Whether the model is estimated or directly constructed.

• Method: etfe, spa, or spafdr

• WindowSize: Resolution parameter (or vector) used for the estimation

• DataName, DataLength, DataTs, DataDomain, DataInterSample:
Properties of the estimation data as above.

See Also Algorithm Properties

idpoly

idss

2-83

etfe

Purpose Estimate empirical transfer functions and periodograms

Syntax g = etfe(data)
g = etfe(data,M,N)

Description etfe estimates the transfer function g as an idfrd object of the general
linear model:

data contains the output-input data and is an iddata object (time or
frequency domain).

g is given as an idfrd object with the estimate of at the
frequencies

w = [1:N]/N*pi/T

The default value of N is 128.

In case data contains a time series (no input channels), g is returned as
the periodogram of y.

When M is specified other than the default value M = [], a smoothing
operation is performed on the raw spectral estimates. The effect of M is
then similar to the effect of M in spa. This can be a useful alternative to
spa for narrowband spectra and systems, which require large values
of M.

When etfe is applied to time series, the corresponding spectral estimate
is normalized in the way that is defined in “Spectrum Normalization”.
etfe normalization differs from the spectrum normalization in the
Signal Processing Toolbox product.

If the (input) data is marked as periodic (data.Period = integer) and
contains an even number of periods, the response is computed at the
frequencies k*2*pi/period for k = 0 up to the Nyquist frequency.

2-84

etfe

Examples Compare an empirical transfer function estimate to a smoothed spectral
estimate.

ge = etfe(z);
gs = spa(z);
bode(ge,gs)

Generate a periodic input, simulate a system with it, and compare the
frequency response of the estimated model with the true system at the
excited frequency points.

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);
me = etfe([y u])
bode(me,'b*',m)

Algorithm The empirical transfer function estimate is computed as the ratio of the
output Fourier transform to the input Fourier transform, using fft.
The periodogram is computed as the normalized absolute square of the
Fourier transform of the time series.

You obtain the smoothed versions (M less than the length of z) by
applying a Hamming window to the output fast Fourier transform
(FFT) times the conjugate of the input FFT, and to the absolute square
of the input FFT, respectively, and subsequently forming the ratio of
the results. The length of this Hamming window is equal to the number
of data points in z divided by M, plus one.

See Also bode

ffplot

freqresp

idfrd

2-85

etfe

nyquist

spa

spafdr

2-86

evaluate

Purpose Value of nonlinearity estimator at given input

Syntax value = evaluate(nl,x)

Arguments nl
Nonlinearity estimator object.

x
Value at which to evaluate the nonlinearity.

If nl is a single nonlinearity estimator, then x is a 1-by-nx row
vector or an nv-by-nx matrix, where nx is the dimension of the
regression vector input to nl (size(nl)) and nv is the number of
points where nl is evaluated.

If nl is an array of ny nonlinearity estimators, then x is a 1-by-ny
cell array of nv-by-nx matrices.

Description value = evaluate(nl,x) computes the value of a nonlinear estimator
object of type customnet, deadzone, linear, neuralnet, pwlinear,
saturation, sigmoidnet, treepartition, or wavenet.

Example The following syntax evaluates the nonlinearity of an estimated
nonlinear ARX model m:

value = evaluate(m.Nonlinearity,x)

where m.Nonlinearity accesses the nonlinearity estimator of the
nonlinear ARX model.

See Also idnlarx

idnlhw

2-87

fcat

Purpose Concatenate frequency-domain signals in data objects

Syntax Mc = fcat(M1,M2,...Mn)

Description M1, M2, etc., are all idfrd objects or iddata frequency-domain objects.

Mc is the corresponding object obtained by concatenation of the
responses at all the frequencies in Mk.

Note that for iddata objects, this is the same as vertical concatenation
(vertcat).

Mc = [M1;M2;..;Mn].

See Also fselect

iddata

idfrd

2-88

feedback

Purpose Identify possible feedback data

Syntax [fbck,fbck0,nudir] = feedback(Data)

Description Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry
is a measure of feedback from output ky to input ku. The value is a
probability P in percent. Its interpretation is that if the hypothesis that
there is no feedback from output ky to input ku were tested at the level
P, it would have been rejected. An intuitive but technically incorrect
way of thinking about this is to see P as “the probability of feedback.”
Often only values above 90% are taken as indications of feedback. When
fbck is calculated, direct dependence at lag zero between u(t) and y(t) is
not regarded as a feedback effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(t) and
y(t) is viewed as feedback effect.

nudir: A vector containing those input numbers that appear to have a
direct effect on some outputs, that is, no delay from input to output.

See Also advice

iddata

idmodel

2-89

ffplot

Purpose Compute and plot frequency response magnitude and phase for linear
frequencies

Syntax ffplot(m)
ffplot(m,w)
ffplot(m('noise')
ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)

Description ffplot(m) plots a frequency response plot for the model m, which can
be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency
response is a function of linear frequencies in units of inverse time
(stored as the TimeUnit model property). The default frequency values
are determined from the model dynamics. For time series spectra,
phase plots are omitted. For MIMO models, press Enter to view the
next plot in the sequence of different I/O channel pairs, annotated using
the InputNames and OuputNames model properties.

ffplot(m,w) plots a frequency response plot at specified frequencies w
in inverse time units, which can be:

• A vector of values.

• {wmin,wmax}, which specifies 100 linearly spaced frequency values
ranging from a minimum value wmin and a maximum value wmax.

• {wmin,wmax,np}, which specifies np linearly spaced frequency values.

Note For idfrd models, you cannot specify individual frequencies
and can only limit the frequencies range for the internally stored
frequencies using {wmin,wmax}.

ffplot(m('noise') plots a frequency response plot of the output noise
spectra when the model contains noise spectrum information.

2-90

ffplot

ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill') plots
a frequency response plot for several models. sd specifies the confidence
region as a positive number that represents the number of standard
deviations. The argument 'fill' indicates that the confidence region
is color filled. mode = 'same' displays all I/O channels in the same
plot. Set ap = 'A' to show only amplitude plots, or ap = 'P' to show
only phase plots.

[mag,phase,w] = ffplot(m) computes the magnitude mag and
phase values of the frequency response, which are 3-D arrays with
dimensions (number of outputs)-by-(number of inputs)-by-(length of
w). w specifies the frequency values for computing the response even
if you did not specify it as an input. For SISO systems, mag(1,1,k)
and phase(1,1,k) are the magnitude and phase (in degrees) at the
frequency w(k). For MIMO systems, mag(i,j,k) is the magnitude of
the frequency response at frequency w(k) from input j to output i, and
similarly for phase(i,j,k). When m is a time series, mag is its power
spectrum and phase is zero.

[mag,phase,w,sdmag,sdphase] = ffplot(m) computes the standard
deviations of the magnitude sdmag and the phase sdphase. sdmag is an
array of the same size as mag, and sdphase is an array of the same
size as phase.

See Also bode

etfe

freqresp

idfrd

nyquist

spa

spafdr

2-91

fft

Purpose Transform iddata object to frequency domain data

Syntax Datf = fft(Data)
Datf = fft(Data,N)
Datf = fft(Data,N,'complex')

Description If Data is a time-domain iddata object with real-valued signals and with
constant sampling interval Ts, Datf is returned as a frequency-domain
iddata object with the frequency values equally distributed from
frequency 0 to the Nyquist frequency. Whether the Nyquist frequency
actually is included or not depends on the signal length (even or odd).
Note that the FFTs are normalized by dividing each transform by the
square root of the signal length. That is in order to preserve the signal
power and noise level.

In the default case, the length of the transformation is determined by
the signal length. A second argument N will force FFT transformations
of length N, padding with zeros if the signals in Data are shorter and
truncating otherwise. Thus the number of frequencies in the real signal
case will be N/2 or (N+1)/2. If Data contains several experiments, N can
be a row vector of corresponding length.

For real signals, the default is that Datf only contains nonnegative
frequencies. For complex-valued signals, negative frequencies are also
included. To enforce negative frequencies in the real case, add a last
argument, 'Complex'.

See Also iddata

ifft

2-92

findop(idnlarx)

Purpose Compute operating point for nonlinear ARX model

Syntax [X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,X0)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

Description [X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes
operating-point state values, X, and input values, U, from steady-state
specifications for an idnlarx model. For more information about the
states of an idnlarx model, see “Definition of idnlarx States” on page
2-189.

[X,U] = findop(SYS,SPEC) computes the equilibrium operating point
using the specifications in the object SPEC. Whereas the previous
command only lets you specify the input and output level, SPEC provides
additional specification for computing the steady-state operating point.

[X,U] = findop(SYS,'snapshot',T,UIN,X0) computes the operating
point at a simulation snapshot of time T using the specified input and
initial state values.

[X,U,REPORT] = findop(...) creates a structure, REPORT, containing
information about the algorithm for computing an operating point.

findop(SYS,...,PVPairs) specifies property-value pairs for setting
algorithm options.

Input • SYS: idnlarx (nonlinear ARX) model.

• 'steady': Computes operating point using steady-state input and
output levels.

• 'snapshot': Computes operating point at simulating snapshot of
model SYS at time T.

• InputLevel: Steady-state input level for computing operating point.
Use NaN when the value is unknown.

2-93

findop(idnlarx)

• OutputLevel: Steady-state output level for computing the operating
point. Use NaN when the value is unknown.

• SPEC: Operating point specifications object. Use SPEC =
OPERSPEC(SYS) to construct the SPEC object for model SYS. Then,
configure SPEC options, such as signal bounds, known values, and
initial guesses. See operspec(idnlarx) for more information.

• T: Simulation snapshot time at which to compute the operating point.

• UIN: Input for simulating the model. UIN is a double matrix or an
iddata object. The number of input channels in UIN must match
the number of SYS inputs.

• X0: Initial states for model simulation.

Default: Zero.

• PVPairs: Property-value pairs for customizing the model Algorithm
property fields, such as SearchMethod, MaxSize, and Tolerance.

Output • X: Operating point state values.

• U: Operating point input value.

• REPORT: Structure containing the following fields:

- SearchMethod: String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- WhyStop: String describing why the estimation stopped.

- Iterations: Number of estimation iterations.

- FinalCost: Final value of the sum of squared errors that the
algorithm minimizes.

- FirstOrderOptimality: Measure of the gradient of the search
direction at the final parameter values when the search algorithm
terminates. It is equal to the ∞ -norm of the gradient vector.

- SignalLevels: Structure containing fields Input and Output,
which are the input and output signal levels of the operating point.

2-94

findop(idnlarx)

Algorithm findop computes the operating point from steady-state operating point
specifications or at a simulation snapshot.

Computing the Operating Point from Steady-State
Specifications

You specify to compute the steady-state operating point by calling
findop in either of the following ways:

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

When you use the syntax [X,U] =
findop(SYS,'steady',InputLevel,OutputLevel), the algorithm
assumes the following operating-point specifications:

• All finite input values are fixed values. Any NaN values specify an
unknown input signal with the initial guess of 0.

• All finite output values are initial guess values. Any NaN values
specify an unknown output signal with the initial guess of 0.

• The minimum and maximum bounds have default values (-/+ Inf) for
both Input and Output properties in the specification object.

Using the syntax [X,U] = findop(SYS,SPEC), you can specify
additional information, such as the minimum and maximum constraints
on the input/output signals and whether certain inputs are known
(fixed).

To compute the states, X, and the input, U, of the steady-state operating
point, findop uses the algorithm specified in the SearchMethod
property of MODEL.Algorithm to minimize the norm of the error e(t) =
y(t)-f(x(t), u(t)), where f is the nonlinearity estimator, x(t) are the model
states, and u(t) is the input.

The algorithm uses the following independent variables for
minimization:

• Unknown (unspecified) inputs

2-95

findop(idnlarx)

• Output signals

Because the states of a nonlinear ARX (idnlarx) model are delayed
samples of the input and output variables, the values of all the states
are the constant values of the corresponding steady-state inputs and
outputs. For more information about the definition of nonlinear ARX
model states, see “Definition of idnlarx States” on page 2-189.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] =
findop(SYS,'snapshot',T,UIN,X0), the algorithm simulates the
model output until the snapshot time, T. At the snapshot time, the
algorithm passes the input and output samples to the data2state
command to map these values to the current state vector.

Note For snapshot-based computations, findop does not perform
numerical optimization.

Examples In this example, you compute the operating point of an idnlarx model
for a steady-state input level of 1.

1 Estimate an idnlarx model from sample data iddata2.

load iddata2;
M = nlarx(z2,[4 3 2],'wavenet');

2 Compute the steady-state operating point for an input level of 1.

x0 = findop(M,'steady',1,NaN)

2-96

findop(idnlarx)

See Also data2state(idnlarx)

operspec(idnlarx)

sim(idnlarx)

2-97

findop(idnlhw)

Purpose Compute operating point for Hammerstein-Wiener model

Syntax [X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,X0)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

Description [X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes
operating-point state values, X, and input values, U, from steady-state
specifications for an idnlhw model. For more information about the
states of an idnlhw model, see “idnlhw States” on page 2-221.

[X,U] = findop(SYS,SPEC) computes the equilibrium operating point
using the specifications in the object SPEC. Whereas the previous
command only lets you specify the input and output level, SPEC provides
additional specification for computing the steady-state operating point.

[X,U] = findop(SYS,'snapshot',T,UIN,X0) computes the operating
point at a simulation snapshot of time T using the specified input and
initial state values.

[X,U,REPORT] = findop(...) creates a structure, REPORT, containing
information about the algorithm for computing an operating point.

findop(SYS,...,PVPairs) specifies property-value pairs for setting
algorithm options.

Input • SYS: idnlhw (Hammerstein-Wiener) model.

• 'steady': Computes operating point using steady-state input and
output levels.

• 'snapshot': Computes operating point at simulating snapshot of
model SYS at time T.

• InputLevel: Steady-state input level for computing operating point.
Use NaN when the value is unknown. Do not enter OutputLevel
when InputLevel does not contain any NaN values.

2-98

findop(idnlhw)

• OutputLevel: Steady-state output level for computing the operating
point. Use NaN when the value is unknown.

• SPEC: Operating point specifications object. Use SPEC =
OPERSPEC(SYS) to construct the SPEC object for model SYS. Then,
configure SPEC options, such as signal bounds, known values, and
initial guesses. See operspec(idnlhw) for more information.

• T: Simulation snapshot time at which to compute the operating point.

• UIN: Input for simulating the model. UIN is a double matrix or an
iddata object. The number of input channels in UIN must match
the number of SYS inputs.

• X0: Initial states for model simulation.

Default: Zero.

• PVPairs: Property-value pairs for customizing the model Algorithm
property fields, such as SearchMethod, MaxSize, and Tolerance.

Output • X: Operating point state values.

• U: Operating point input value.

• REPORT: Structure containing the following fields:

- SearchMethod: String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- WhyStop: String describing why the estimation stopped.

- Iterations: Number of estimation iterations.

- FinalCost: Final value of the sum of squared errors that the
algorithm minimizes.

- FirstOrderOptimality: Measure of the gradient of the search
direction at the final parameter values when the search algorithm
terminates. It is equal to the ∞ -norm of the gradient vector.

- SignalLevels: Structure containing fields Input and Output,
which are the input and output signal levels of the operating point.

2-99

findop(idnlhw)

Algorithm findop computes the operating point from steady-state operating point
specifications or at a simulation snapshot.

Computing the Operating Point from Steady-State
Specifications

You specify to compute the steady-state operating point by calling
findop in either of the following ways:

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

When you use the syntax [X,U] =
findop(SYS,'steady',InputLevel,OutputLevel), the algorithm
assumes the following operating-point specifications:

• All finite input values are fixed values. Any NaN values specify an
unknown input signal with the initial guess of 0.

• All finite output values are initial guess values. Any NaN values
specify an unknown output signal with the initial guess of 0.

• The minimum and maximum bounds have default values (-/+ Inf) for
both Input and Output properties in the specification object.

Using the syntax [X,U] = findop(SYS,SPEC), you can specify
additional information, such as the minimum and maximum constraints
on the input/output signals and whether certain inputs are known
(fixed).

findop uses a different approach to compute the steady-state operating
point depending on how much information you provide for this
computation:

• When you specify values for all input levels (no NaN values).
For a given input level, U, the equilibrium state values are X =
inv(I-A)*B*f(U), where [A,B,C,D] = ssdata(model.LinearModel),
and f() is the input nonlinearity.

2-100

findop(idnlhw)

• When you specify known and unknown input levels. findop
uses numerical optimization to minimize the norm of the error
and compute the operating point. The total error is the union of
contributions from e1 and e2 , e(t) = (e1(t)e2(t)), such that:

- e1 applies for known outputs and the algorithm minimizes e1 = y-
g(L(x,f(u))), where f is the input nonlinearity, L(x,u) is the linear
model with states x, and g is the output nonlinearity.

- e2 applies for unknown outputs and the error is a measure of
whether these outputs are within the specified minimum and
maximum bounds. If a variable is within its specified bounds, the
corresponding error is zero. Otherwise, the error is equal to the
distance from the nearest bound. For example, if a free output
variable has a value z and its minimum and maximum bounds are
L and U, respectively, then the error is e2= max[z-U, L-z, 0].

The independent variables for the minimization problem are the
unknown inputs. In the error definition e, both the input u and the
states x are free variables. To get an error expression that contains
only unknown inputs as free variables, the algorithm findop specifies
the states as a function of inputs by imposing steady-state conditions:
x = inv(I-A)*B*f(U), where [A,B,C,D] are state-space parameters
corresponding to the linear model L(x,u). Thus, substituting x =
inv(I-A)*B*f(U) into the error function results in an error expression
that contains only unknown inputs as free variables computed by the
optimization algorithm.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] =
findop(SYS,'snapshot',T,UIN,X0), the algorithm simulates the
model output until the snapshot time, T. At the snapshot time, the
algorithm computes the inputs for the linear model block of the
Hammerstein-Wiener model (LinearModel property of the idnlhw
object) by transforming the given inputs using the input nonlinearity: w
= f(u). findop uses the resulting w to compute x until the snapshot time
using the following equation: x(t+1) = Ax(t) + Bw(t), where [A,B,C,D]
= ssdata(model.LinearModel).

2-101

findop(idnlhw)

Note For snapshot-based computations, findop does not perform
numerical optimization.

Examples In this example, you compute the operating point of an idnlhw model
for a steady-state input level of 1.

1 Estimate an idnlhw model from sample data iddata2.

load iddata2;
M = nlhw(z2,[4 3 2],'wavenet','pwl');

2 Compute the steady-state operating point for an input level of 1.

x0 = findop(M,'steady',1,NaN)

See Also findstates(idnlhw)

operspec(idnlhw)

sim(idnlhw)

2-102

findstates(idmodel)

Purpose Estimate initial states of linear model from data

Syntax X0 = findstates(MODEL,DATA)
X0 = findstates(MODEL,DATA,INIT)

Description X0 = findstates(MODEL,DATA) estimates the initial states of MODEL
that provide the best fit to output signal in DATA.

X0 = findstates(MODEL,DATA,INIT) specifies how the initial states
should be estimated using the flag INIT.

Input • MODEL: idmodel object. If MODEL is not in state-space form, initial
states must be interpreted as state values corresponding to
idss(MODEL).

• DATA: iddata object with matching input/output dimensions.

• INIT: Flag indicating how the initial states should be estimated. This
flag can have the following values:

- 'e': (Default) Estimate initial state so that the norm of prediction
error is minimized.

- 'd': (Only available for discrete-time models) Same as 'e', but
if MODEL.InputDelay is non-zero, these delays are first converted
to explicit model delays, and the extra initial states (those
corresponding to the delays) are also estimated and returned.

Output • X0: Estimated initial state vector corresponding to time DATA.TStart.
For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

Examples In this example you estimate an idpoly model and simulate it such
that the response of the estimated model matches the estimation data’s
output signal as closely as possible.

1 Load sample data.

load iddata1 % estimation data z1;

2-103

findstates(idmodel)

2 Estimate a linear model from the data.

model = arx(z1, [2 2 1]); % idpoly model

3 Estimate the value of the initial states to best fit the measured
output z1.y.

x0est = findstates(model, z1);

4 Simulate the model.

sim(model, z1.u, 'init', x0est)

See Also compare

pe

sim

2-104

findstates(idnlarx)

Purpose Estimate initial states of nonlinear ARX model from data

Syntax X0 = findstates(MODEL,DATA)
X0 = findstates(MODEL,DATA,X0INIT)
X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM)
X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM,PVPairs)
[X0, REPORT] = findstates(...)

Description X0 = findstates(MODEL,DATA) estimates the initial states of
an idnlarx model that minimize the error between the output
measurements in DATA and the predicted output of the model. The states
of an idnlarx model are defined as the delayed samples of input and
output variables. For more information about the definition of states for
idnlarx models, see “Definition of idnlarx States” on page 2-189.

X0 = findstates(MODEL,DATA,X0INIT) specifies an initial guess for
estimating the initial states.

X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM) allows
switching between prediction-error (default) and simulation-error
minimization.

X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM,PVPairs)
lets you specify the algorithm properties that control the numerical
optimization process as property-value pairs.

[X0, REPORT] = findstates(...) creates a report to summarize
results of numerical optimization that is performed to search for the
model states.

Input • MODEL: idnlarx model.

• DATA: iddata object from which to estimate the initial states of MODEL.

• X0INIT: Initial guess for value of X0. Must be a vector of length equal
to the number of the states of MODEL (sum(getDelayInfo(MODEL))).

• PRED_OR_SIM: Specifies minimization criteria using one of the
following values:

2-105

findstates(idnlarx)

- 'prediction': (Default) Estimation of initial states by
minimizing the difference between the measured output data and
1-step-ahead predicted response of the model.

- 'simulation': Estimation of initial states by minimizing the
difference between the measured output and the simulated
response of the model. This estimation algorithm can be slower
than 'prediction'.

• PVPairs: Property-value pairs that specify the algorithm properties
that control numerical optimization process. By default, algorithm
properties are read from the Algorithm property of MODEL. You can
override MODEL.Algorithm properties using property-value pairs.
For example you might set SearchMethod, MaxSize, Tolerance, and
Display.

Output • X0: Estimated initial state vector corresponding to time DATA.TStart.
For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

• REPORT: Structure containing the following fields:

- 'EstimationCriterion': String containing the minimization
method used.

- 'SearchMethod': String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- 'WhyStop': String describing why the estimation was stopped.

- 'Iterations': Number of iterations carried out during estimation.

- 'FinalCost': The final value of the sum of squared errors that
the search method attempts to minimize

- 'FirstOrderOptimality': Measure of the gradient of the search
direction at the final value of the parameter set when the search
algorithm terminates. It is equal to the ∞ -norm of the gradient
vector.

2-106

findstates(idnlarx)

Examples Estimating Initial States

In this example, you use sample data z1 to create a nonlinear ARX
model. You use findstates to compute the initial states of the model
such that the difference between the predicted output of the model and
the output data in z2 is minimized.

1 Load the sample data and create two data objects z1 and z2.

load twotankdata
% Create data objects z1 and z2.
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

2 Estimate the idnlarx model.

% Estimate a nonlinear ARX model from data in z1.
mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

3 Estimate the initial states of the model.

% Find the initial states X0 of mw1 that minimize
% the error between the output data of z2 and the
% simulated output of mw1.
X0 = findstates(mw1,z2,[],'sim')

Estimating Initial States for Multiple-Experiment Data

In this example, you estimate the initial states for each data set in a
multiple-experiment data object.

1 Create a multi-experiment data set from z1 and z2:

% Create a multi-experiment data set.
zm = merge(z1,z2);

2-107

findstates(idnlarx)

2 Estimate the initial states for each experiment in the data set, such
that the one-step-ahead prediction error is minimized for each data
set.

% Estimate initial states for each data set in zm.
X0 = findstates(mw1,zm)

See Also data2state(idnlarx)

getDelayInfo

findop(idnlarx)

findstates(idmodel)

findstates(idnlhw)

2-108

findstates(idnlgrey)

Purpose Estimate initial states of nonlinear grey-box model from data

Syntax X0 = findstates(NLSYS,DATA);
[X0,ESTINFO] = findstates(NLSYS,DATA);
[X0,ESTINFO] = findstates(NLSYS,DATA,X0INIT);

Description X0 = findstates(NLSYS,DATA); estimates the initial states of an
idnlgrey model from given data. For more information about the states
of idnlgrey models, see “Definition of idnlgrey States” on page 2-209.

[X0,ESTINFO] = findstates(NLSYS,DATA); returns basic information
about the estimation.

[X0,ESTINFO] = findstates(NLSYS,DATA,X0INIT); specifies an
initial guess for X0.

Input • NLSYS: idnlgrey model whose output is to be predicted.

• DATA: Input/output data DATA = [Y U], where U and Y are the
following:

- U: Input data that can be given either as an iddata object or as a
matrix U = [U1 U2 ...Um], where the kth column vector is input
Uk

- Y: Either an iddata object or a matrix of outputs (with as many
columns as there are outputs).

Note For time-continuous idnlgrey models, DATA passed as a
matrix will cause the data sample interval Ts to be assumed to be
equal to 1.

• X0INIT: Initial state strategy to use:

- 'zero': Use zero initial state and estimate all states
(NLSYS.InitialStates.Fixed is thus ignored). Notice that all
states are estimated, whereas they are fixed in predict.

2-109

findstates(idnlgrey)

- 'estimate': NLSYS.InitialStates determines the
values of the states, but all initial states are estimated
(NLSYS.InitialStates.Fixed is thus ignored).

- 'model': (Default) NLSYS.InitialStates determines the values
of the initial states, which initial states to estimate, as well as
their maximum and minimum values.

- vector/matrix: Column vector of appropriate length to be used
as an initial guess for initial states. For multiple experiment
DATA, X0INIT may be a matrix whose columns give different
initial states for each experiment. With this option, all
initial states are estimated (and not fixed as in predict)
(NLSYS.InitialStates.Fixed is thus ignored).

- struct array: Nx-by-1 structure array with fields:

• Name: Name of the state (a string).

• Unit: Unit of the state (a string).

• Value: Value of the states (a finite real 1-by-Ne vector, where Ne
is the number of experiments).

• Minimum: Minimum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
minimum value).

• Maximum: Maximum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
maximum value).

• Fixed: Boolean 1-by-Ne vector, or a scalar Boolean (applicable
for all states) specifying whether the initial state is fixed or not.

Output • X0: Matrix containing the initial states. In the single experiment
case it is a column vector of length Nx. For multi-experiment data, X0
is a matrix with as many columns as there are experiments.

• ESTINFO: Structure or Ne-by-1 structure array containing basic
information about the estimation result (some of the fields normally
stored in NLSYS.EstimationInfo). For multi-experiment data,

2-110

findstates(idnlgrey)

ESTINFO is an Ne-by-1 structure array with elements providing initial
state estimation information related to each experiment.

Examples Estimating Individual Initial States Selectively

In this example you estimate the initial states of a model selectively,
fixing the first state and allowing the second state of the model to be
estimated. First you create a model from sample data and set the Fixed
property of the model such that the second state is free and the first
is fixed.

1 Specify the file describing the model structure, the model orders, and
model parameters.

% Specify the file describing the model structure:
FileName = 'dcmotor_m';
% Specify the model orders [ny nu nx]
Order = [2 1 2];
% Specify the model parameters
% (see idnlgreydemo1 for more information)
Parameters = [0.24365; 0.24964];

2 Estimate the model parameters and set the model properties:

nlgr = idnlgrey(FileName, Order, Parameters);
set(nlgr, 'InputName', 'Voltage','OutputName', ...

{'Angular position', 'Angular velocity'});

3 Free the second state while keeping the first one fixed.

setinit(nlgr,'Fixed',{1 0});

4 Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident',...
'iddemos','data','dcmotordata'));

z = iddata(y,u,0.1,'Name','DC-motor',...
'InputName', 'Voltage', 'OutputName',...
{'Angular position','Angular velocity'});

2-111

findstates(idnlgrey)

5 Estimate the free states of the model.

[X0,EstInfo] = findstates(nlgr,z)

Estimating Initial States Starting from States Stored in Model

This example shows how you can estimate all of the initial states,
starting from the initial state 0, then from the initial states stored in
the model nlgr, and finally using a numerical initial states vector as
the initial guess.

1 Estimate all the initial states starting from 0.

X0 = findstates(nlgr,z,'zero');

2 Estimate the free initial states specified by nlgr, starting from the
initial state stored in nlgr.

X0 = findstates(nlgr, z, 'mod');

3 Estimate all the initial states, starting from an initial state vector
that you specify.

nlgr.Algorithm.Display = 'full';

% Starting from an initial state vector [10;10]
X0 = findstates(nlgr,z,[10;10])

Advanced Use of findstates(idnlgrey)

The following example shows advanced use of findstates. Here you
estimate states for multi-experiment data, such that the states of model
nlgr are estimated separately for each experiment. After creating
a 3-experiment data set z3, you estimate individual initial states
separately.

1 Create a three-experiment data set.

2-112

findstates(idnlgrey)

z3 = merge(z, z, z); % 3-experiment data

2 Fix some initial states and only estimate the free initial states
starting of with the initial state in nlgr. This means that both
elements of state vector 1 will be estimated, that no state of the
second state vector will be estimated, and that only the first state of
state vector 3 is estimated.

% prepare model for 3-experiment data
nlgr = pem(z3, nlgr, 'Display', 'off');

3 Specify which initial states to fix, and set the Display property of
Algorithm to 'full'.

nlgr.InitialStates(1).Fixed = [true false true];
nlgr.InitialStates(2).Fixed = [true false false];
nlgr.Algorithm.Display = 'full';

4 Estimate the initial states and obtain information about the
estimation.

[X0, EstInfo] = findstates(nlgr, z3);

See Also findstates(idnlarx)

findstates(idnlhw)

predict

sim

2-113

findstates(idnlhw)

Purpose Estimate initial states of nonlinear Hammerstein-Wiener model from
data

Syntax X0 = findstates(MODEL,DATA)
X0 = findstates(MODEL,DATA,X0INIT)
X0 = findstates(MODEL,DATA,X0INIT,PVPairs)
[X0, REPORT] = findstates(...)

Description X0 = findstates(MODEL,DATA) estimates the initial states of an
idnlhw model from given data. The states of an idnlhw model are
defined as the states of its embedded linear model (Model.LinearModel).
For more information about the states of idnlhw models, see “idnlhw
States” on page 2-221.

X0 = findstates(MODEL,DATA,X0INIT) specifies an initial guess for
value of X0 using X0INIT.

X0 = findstates(MODEL,DATA,X0INIT,PVPairs) specifies
property-value pairs representing the algorithm properties that control
the numerical optimization process.

[X0, REPORT] = findstates(...) creates a report to summarize
results of numerical optimization that is performed to search for the
model states.

Input • MODEL: idnlhw model.

• DATA: iddata object from which to estimate the initial states of MODEL.

• X0INIT: Initial guess for value of X0. Must be a vector of length equal
to the number of the states of MODEL.

• PVPairs: Property-value pairs that specify the algorithm properties
that control numerical optimization process. By default, algorithm
properties are read from the Algorithm property of MODEL. You can
override MODEL.Algorithm properties using property-value pairs.
For example you might set SearchMethod, MaxSize, Tolerance, and
Display.

2-114

findstates(idnlhw)

Output • X0: Estimated initial state vector corresponding to time DATA.TStart.
For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

• REPORT: Structure containing the following fields:

- 'EstimationCriterion': String containing the minimization
method used.

- 'SearchMethod': String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- 'WhyStop': String describing why the estimation was stopped.

- 'Iterations': Number of iterations carried out during estimation.

- 'FinalCost': The final value of the sum of squared errors that
the search method attempts to minimize

- 'FirstOrderOptimality': Measure of the gradient of the search
direction at the final value of the parameter set when the search
algorithm terminates. It is equal to the ∞ -norm of the gradient
vector.

Examples In this example, you create an idnlarx model from sample data and
estimate initial states using another data set. Next you jointly estimate
the states for separate data sets contained in multi-experiment data.

1 Load the data and create iddata objects z1 and z2.

load twotankdata

z = iddata(y, u, 0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

2 Estimate an idnlhw model from data.

m1=nlhw(z1,[4 2 1], 'unitgain' , 'pwlinear')

3 Estimate the initial states of m1 using data z2.

2-115

findstates(idnlhw)

% Estimate initial states. View estimation trace and use
% only 5 iterations in the search algorithm
X0 = findstates(m1,z2,[],'MaxIter',5,'Display','on')

4 Estimate states using multiple-experiment data. There are separate
sets of initial states for each experiment. The states of all data
experiments are jointly estimated, and X0 is returned as a matrix
with as many columns as there are data experiments.

zm = merge(z1,z2);
X0 = findstates(m1, zm)

See Also findstates(idnlarx)

findstates(idmodel)

findop(idnlhw)

2-116

frd

Purpose Convert idfrd objects to Control System Toolbox frequency-response
LTI model

Syntax sys = frd(mod)

Description mod is an idfrd object. sys is returned as an frd object.

The fields Frequency, ResponseData, Units, Ts, InputDelay,
InputName, OutputName and Notes in mod are transferred to
sys. The remaining fields (SpectrumData, CovarianceData and
NoiseCovariance) are ignored. The command, therefore, cannot be
applied to a time-series idfrd model object.

See Also ss

tf

zpk

2-117

freqresp

Purpose Frequency response data from linear models

Alternative idfrd computes the same information as freqresp and stores it in the
idfrd model object.

Syntax H = freqresp(m)
[H,w,covH] = freqresp(m,w)

Description H = freqresp(m) returns the frequency response H of the model m at
default frequencies determined from the dynamics of the model. For
idmodel models, computes the frequency response of the model. For
idfrd models, extracts the frequency data from the model object. If m
contains nonzero delays (stored as m.InputDelay), these delays are
absorbed into the returned frequency response.

[H,w,covH] = freqresp(m,w) returns the frequency response H of
the model m

at frequencies w. For idfrd models with input channels, the frequency
response is H = m.ResponseData and the covariance of the response
is covH = m.CovarianceData. For time-series idfrd models (power
spectra), the frequency response is H = m.SpectrumData and the
covariance of the response is covH = m.NoiseCovariance.

Tip For a SISO model, use H(:) to obtain a vector of the frequency
response. If models containing input channels, you can get the
spectrum information of the noise (output disturbance) signal using
freqresp(m('n')).

Inputs

m
Name of the idmodel or idfrd model object.

2-118

freqresp

w
Frequencies for computing the frequency response, specified as a
vector of real values in rad/s.

Note If you do not specify w, freqresp returns the frequency
response at default frequencies determined from the dynamics
of the model.

Outputs

H
Frequency response data of the model.

If m has ny outputs and nu inputs, and w contains Nw frequencies,
the output H is an ny-by-nu-by-Nw array such that H(:,:,k) is a
complex-valued response at frequency w(k).

w
Frequencies of the response, returned as a vector of real values
in rad/s.

covH
For a model with input channels, covariance of the response of
a model that is a 5-D array. covH(ky,ku,k,:,:) is the 2-by-2
covariance matrix of the response from the input ku to the output
ky at frequency w(k). The (1,1) element is the variance of the
real part, the (2,2) element is the variance of the imaginary part,
and the (1,2) and (2,1) elements are the covariance between the
real and imaginary parts.

Tip squeeze(covH(ky,ku,k,:,:)) returns the covariance
matrix of the corresponding response.

2-119

freqresp

For a time-series model (no input channels), H is an ny-by-ny-by-Nw
array of the power spectrum of the outputs. Thus, H(:,:,k) is the
spectrum matrix at frequency w(k). The element H(k1,k2,k)
is the cross spectrum between outputs k1 and k2 at frequency
w(k). When k1 = k2, this is the real-valued power spectrum of
output k1.

covH is then the covariance of the estimated spectrum H such that
covH(k1,k1,k) is the variance of the power spectrum estimate of
output k1 at frequency w(k). No information about the variance
of the cross spectra is given; that is, covH(k1,k2,k) = 0 for k1
not equal to k2.

See Also bode

etfe

ffplot

idfrd

nyquist

spa

spafdr

2-120

fpe

Purpose Akaike Final Prediction Error for estimated model

Syntax fp = fpe(Model1,Model2,Model3,...)

Description Model is the name of an idarx, idgrey, idpoly, idproc, idss, idnlarx,
idnlhw, or idnlgrey model object.

fp is returned as a row vector containing the values of the Akaike Final
Prediction Error (FPE) for the different models.

Definition Akaike’s Final Prediction Error (FPE) criterion provides a measure of
model quality by simulating the situation where the model is tested on
a different data set. After computing several different models, you can
compare them using this criterion. According to Akaike’s theory, the
most accurate model has the smallest FPE.

Note If you use the same data set for both model estimation and
validation, the fit always improves as you increase the model order and,
therefore, the flexibility of the model structure.

Akaike’s Final Prediction Error (FPE) is defined by the following
equation:

FPE V
d

N
d

N
=

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1

where V is the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

The toolbox assumes that the final prediction error is asymptotic for
d<<N and uses the following approximation to compute FPE:

FPE V d
N= +()1 2

The loss function V is defined by the following equation:

2-121

fpe

V t tN N N
TN

= () ()()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑det , ,1

1
ε θ ε θ

where θN represents the estimated parameters.

References Sections 7.4 and 16.4 in Ljung (1999).

See Also EstimationInfo

aic

2-122

fselect

Purpose Frequencies from frequency response data

Syntax idfm = fselect(idf,index)
idfm = fselect(idf,Fmin,Fmax)

Description idf is any idfrd object. index is a row vector of frequency indices, so
that idfm is the idfrd object that contains the response at frequencies
idf.Frequency(Index).

If Fmin and Fmax are specified, idfm contains responses at frequencies
between Fmin and Fmax.

Note that the operation is the same as dat(index) for an iddata object.

Examples Select every fifth frequency:

idfm = fselect(idf,5:5:100)

Select the response in the third quadrant:

ph = angle(squeeze(idf.response));
idfm = fselect(idf,find(ph>-pi & ph <-pi/2))

See Also fcat

iddata

idfrd

2-123

get

Purpose Query properties of data and model objects

Syntax Value = get(m,'PropertyName')
get(m)
Struct = get(m)

Description value = get(m,'PropertyName') returns the current value of the
property PropertyName of the iddata object or idfrd object, or idmodel
object (idgrey, idarx, idpoly, idss), or idnlgrey, idnlarx, or idnlhw
model object.

The string 'PropertyName' can be the full property name (for
example, 'SSParameterization') or any unambiguous case-insensitive
abbreviation (for example, 'ss').

Struct = get(m) converts the object m into a standard MATLAB
structure with the property names as field names and the property
values as field values.

Without a left-hand argument

get(m)

displays all properties of m and their values.

Remarks An alternative to the syntax

Value = get(m,'PropertyName')

is the structure-like referencing

Value = m.PropertyName

See Also Algorithm Properties

idarx

idfrd

2-124

get

idgrey

idnlarx

idnlgrey

idnlhw

idpoly

idproc

idss

2-125

getDelayInfo

Purpose Get input/output delay information for idnlarx model structure

Syntax DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)

Description DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each
input and output variable of an idnlarx model.

DELAYS = getDelayInfo(MODEL,TYPE) lets you choose between
obtaining maximum delays across all input and output variables or
maximum delays for each output variable individually. When delays
are obtained for each output variable individually a matrix is returned,
where each row is a vector containing ny+nu maximum delays for each
output variable, and:

• ny is the number of outputs of MODEL.

• nu is the number of inputs of MODEL.

Delay information is useful for determining the number of states
in the model. For nonlinear ARX models, the states are related to
the set of delayed input and output variables that define the model
structure (regressors). For example, if an input or output variable p
has a maximum delay of D samples, then it contributes D elements
to the state vector:

p(t-1), p(t-2), ...p(t-D)

The number of states of a nonlinear ARX model equals the sum of
the maximum delays of each input and output variable. For more
information about the definition of states for idnlarx models, see
“Definition of idnlarx States” on page 2-189

Input getDelayInfo accepts the following arguments:

• MODEL: idnlarx model.

2-126

getDelayInfo

• TYPE: (Optional) Specifies whether to obtain channel delays
'channelwise' or 'all' as follows:

- 'all': Default value. DELAYS contains the maximum delays
across each output (vector of ny+nu entries, where [ny, nu] =
size(MODEL)).

- 'channelwise': DELAYS contains delay values separated for each
output (ny-by-(ny+nu) matrix).

Output • DELAYS: Contains delay information in a vector of length ny+nu
arranged with output channels preceding the input channels, i.e.,
[y1, y2,.., u1, u2,..].

Examples In the following example you create a 2-output, 3-input nonlinear ARX
model, then verify the number of delays using getDelayInfo.

1 Create an idnlarx model.

M = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],...
'linear');

2 Compute the maximum delays for each output variable individually.

Del = getDelayInfo(M,'channelwise')

Del =

2 0 2 1 0
1 0 1 5 0

The matrix Del contains the maximum delays for the first and second
output of the model M. You can interpret the contents of matrix Del
as follows:

• In the dynamics for the output 1 (y1) of model M, the maximum delays
for each input/output channel are as follows: y1: 2, y2: 0, u1: 2, u2:
1, u3:0.

2-127

getDelayInfo

• Similarly, in the dynamics for the output 2 (y2) of the model, the
maximum delays in channels y1, y2, u1, u2, u3 are 1, 0, 1, 5, and 0
respectively.

You can find the maximum delays for all the input and output variables
in the order (y1, y2, u1, u2, u3) by executing the command

Del=getDelayInfo(M, 'all')

which returns

Del =

2 0 2 5 0

Note The maximum delay across all output equations can be obtained
by executing MaxDel = max(Del,[],1). Since input u2 has 5 delays
(the 4th entry in Del, there are 5 terms corresponding to u5 in the state
vector ((u5(t-1), ...u5(t-5). Applying this definition to all I/O channels,
the complete state vector for model M becomes:

X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1), u2(t-2), u2(t-3), u2(t-4),
u2(t-5)]

See Also data2state(idnlarx)

getreg

idnlarx

2-128

getexp

Purpose Specific experiments from multiple-experiment data set

Syntax d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

Description data is an iddata object that contains several experiments. d1
is another iddata object containing the indicated experiment(s).
The reference can either be by ExperimentNumber, as in
d1 = getexp(data,3) or d1 = getexp(data,[4 2]); or by
ExperimentName, as in d1 = getexp(data,'Period1') or
d1 = getexp(data,{'Day1','Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment
data objects.

You can also retrieve the experiments using a fourth subscript, as in d1
= data(:,:,:,ExperimentNumber). Type help iddata/subsref for
details on this.

2-129

getinit

Purpose Values of idnlgrey model initial states

Syntax getinit(model)
getinit(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Default: 'Value'.

Description getinit(model) gets the initial-state values in the 'Value' field of the
InitialStates model property.

getinit(model,prop) gets the initial-state values of the prop field
of the InitialStates model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', 'Maximum', and 'Fixed'.

The returned values are an Nx-by-1 cell array of values, where Nx is
the number of states.

See Also getpar

idnlgrey

setinit

setpar

2-130

getpar

Purpose Parameter values and properties of idnlgrey model parameters

Syntax getpar(model)
getpar(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the Parameters model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', or 'Fixed'.

Default: 'Value'.

Description getpar(model) gets the model parameter values in the 'Value' field of
the Parameters model property.

getpar(model,prop) gets the model parameter values in the prop
field of the Parameters model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where Np is
the number of parameters.

See Also getinit

idnlgrey

setinit

setpar

2-131

getreg

Purpose Regressor expressions and numerical values in nonlinear ARX model

Syntax Rs = getreg(model)
Rs = getreg(model,subset)
Rm = getreg(model,subset,data)
Rm = getreg(model,subset,data,init)

Description Rs = getreg(model) returns expressions for computing regressors in
the nonlinear ARX model. Rs is a cell array of strings. model is an
idnlarx object.

Rs = getreg(model,subset) returns regressor expressions for a
specified subset of regressors. subset is a string.

Rm = getreg(model,subset,data) returns regressor values as a
matrix for a specified subset of regressors.

Rm = getreg(model,subset,data,init) returns regressor values
as matrices for a specified subset of regressors. The first N rows
of each regressor matrix depend on the initial states init, where
N is the maximum delay in the regressors (see getDelayInfo). For
multiple-output models, Rm is a cell array of cell arrays.

Inputs data
iddata object containing measured data.

init
Initial conditions of your data:

• 'z' (default) specifies zero initial state.

• Real column vector containing the initial state values. input
and output data values at a time instant before the first sample
in data. To create the initial state vector from the input-output
data, use the data2state method of the idnlarx class. For
multiple-experiment data, this is a matrix where each column
specifies the initial state of the model corresponding to that
experiment.

2-132

getreg

• iddata object containing input and output samples at
time instants before to the first sample in data. When the
iddata object contains more samples than the maximum
delay in the model, only the most recent samples are used.
The minimum number of samples required is equal to
max(getDelayInfo(model)).

model
iddata object representing nonlinear ARX model.

subset
String that represents a subset of all regressors:

• (Default) 'all' — All regressors.

• 'custom'—Only custom regressors.

• 'input'—Only standard regressors computed from input data.

• 'linear'—Only regressors not used in the nonlinear block.

• 'nonlinear'—Only regressors used in the nonlinear block.

Note You can use 'nl' as an abbreviation of 'nonlinear'.

• 'output'—Only regressors computed from output data.

• 'standard'—Only standard regressors (excluding any custom
regressors).

Outputs Rm
Matrix of regressor values for all or a specified subset of
regressors. Each matrix in Rm contains as many rows as there are
data samples. For a model with ny outputs, Rm is an ny-by-1 cell
array of matrices. When data contains multiple experiments,
Rm is a cell array where each element corresponds to a matrix of
regressor values for an experiment.

2-133

getreg

Rs
Regressor expressions represented as a cell array of strings. For a
model with ny outputs, Rs is an ny-by-1 cell array of cell arrays
of strings. For example, the expression 'u1(t-2)' computes the
regressor by delaying the input signal u1 by two time samples.
Similarly, the expression 'y2(t-1)' computes the regressor by
delaying the output signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in
the idnlarx object property model.NonlinearRegressors.

Examples Get regressor expressions and values, and evaluate the predicted model
output:

% Load sample data u and y:
load twotankdata;
Ts = 0.2; % Sampling interval is 0.2 min

% Create data object:
z = iddata(y,u,Ts);

% Use first 1000 samples for estimation:
ze = z(1:1000);

% Estimate nonlinear ARX model
model = nlarx(ze,[3 2 1]);

% Get regressor expressions:
Rs = getreg(model)

% Get regressor values:
Rm = getreg(model,'all',ze)

% Evaluate model output for one-step-prediction:
Y = evaluate(model.Nonlinearity,Rm)

% The previous result is equivalent to:
Y_p = predict(model,ze,1,'z')

See Also addreg | customreg | evaluate | polyreg

How To • “Identifying Nonlinear ARX Models”

2-134

getTrend

Purpose Data offset and trend information

Syntax T = getTrend(data)
T = getTrend(data,0)
T = getTrend(data,1)

Description T = getTrend(data) constructs a TrendInfo object to store offset,
mean, or linear trend information for detrending or retrending data.
You can assign specific offset and slope values to T.

T = getTrend(data,0) computes the means of input and output
signals and stores them as InputOffset and OutputOffset properties
of T, respectively.

T = getTrend(data,1) computes a best-fit straight line for both input
and output signals and stores them as properties of T.

Examples Compute input-output signal means, store them, and detrend the data:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Compute the mean of the data
T = getTrend(data,0)
% Remove the mean from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

Remove a specific offset from input and output data signals:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec

2-135

getTrend

data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

See Also detrend

retrend

TrendInfo

“Handling Offsets and Trends in Data”

2-136

idarx

Purpose Multiple-output ARX polynomials, impulse response, or step response
model

Syntax m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

Description idarx creates an object containing parameters that describe the general
multiple-input, multiple-output model structure of ARX type.

Here and are matrices of dimensions ny-by-ny and ny-by-nu,
respectively. (ny is the number of outputs, that is, the dimension of the
vector , and nu is the number of inputs.)

The arguments A and B are 3-D arrays that contain the A matrices and
the B matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that:

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with:

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that delays in
the model are defined by setting the corresponding leading entries in B
to zero. For a multivariate time series, take B = [].

The optional property NoiseVariance sets the covariance matrix of
the driving noise source in the model above. The default value is
the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time
models (Ts = 0) are not supported.

2-137

idarx

The use of idarx is twofold. You can use it to create models that are
simulated (using sim) or analyzed (using bode, pzmap, etc.). You can
also use it to define initial value models that are further adjusted to
data (using arx). The free parameters in the structure are consistent
with the structure of A and B; that is, leading zeros in the rows of B are
regarded as fixed delays, and trailing zeros in A and B are regarded as a
definition of lower-order polynomials. These zeros are fixed, while all
other parameters are free.

For a model with one output, ARX models can be described both as
idarx and idpoly models. The internal representation is different,
however.

idarx
Properties

• A, B: The A and B polynomials as 3-D arrays, described above.

• dA, dB: The standard deviations of A and B. Same format as A and B.
Cannot be set.

• na, nb, nk: The orders and delays of the model. na is an ny-by-ny
matrix whose i-j entry is the order of the polynomial corresponding to
the i-j entry of A. Similarly nb is an ny-by-nu matrix with the orders
of B. nk is also an ny-by-nu matrix, whose i-j entry is the delay from
input j to output i, that is, the number of leading zeros in the i-j
entry of B.

• InitialState: This describes how the initial state (initial values in
filtering, etc.) should be handled. For time-domain applications,
this is typically handled by starting the filtering when all data are
available. For frequency-domain data, you must estimate initial
states. The possible values of InitialState are 'zero', 'estimate',
and 'auto' (which makes a data-dependent choice between zero
and estimate).

In addition to these properties, idarx objects also have all the properties
of the idmodel object. See idmodel, Algorithm Properties, and
EstimationInfo.

2-138

idarx

Note that you can set and retrieve all properties either with the set and
get commands or by subscripts. Autofill applies to all properties and
values, and they are case insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idarx.

idarx
Definition
of States

The states of an idarx model are defined as those corresponding to the
model obtained by converting them to the state-space format using the
idss command. For example, if you have an idarx model defined by
m1 = idarx(A,B,1), then the initial states of this model correspond to
those of m2 = idss(m1). The concept of states is useful for functions
such as sim, predict, compare and findstates.

Examples Simulate a second-order ARX model with one input and two outputs,
and then estimate a model using the simulated data.

A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

See Also Algorithm Properties

arx

arxdata

EstimationInfo

2-139

idarx

idmodel

idpoly

2-140

iddata

Purpose Time- or frequency-domain data

Syntax data = iddata(y,[],Ts)
data = iddata(y,u,Ts)
data = iddata(y,u,Ts,'Frequency',W)
data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data = iddata(idfrd_object)

Arguments y
Name of MATLAB variable that represents the output
signal from a system. Sets the OutputData iddata property.
For a single-output system, this is a column vector. For a
multiple-output system with Ny output channels and NT time
samples, this is an NT-by-Ny matrix.

Note Output data must be in the same domain as input data.

u
Name of MATLAB variable that represents the input signal to a
system. Sets the InputData iddata property. For a single-input
system, this is a column vector. For a multiple-output system
with Nu output channels and NT time samples, this is an NT-by-Nu
matrix.

Note Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds.
Default value is 1. For continuous-time data in the frequency
domain, set Ts to 0.

'P1',V1,...,'PN',VN
Pairs of iddata property names and property values.

2-141

iddata

idfrd_object
Name of idfrd data object.

Description data = iddata(y,[],Ts) creates an iddata object for time-series data,
containing a time-domain output signal y and an empty input signal
[], respectively. Ts specifies the sampling interval of the experimental
data.

data = iddata(y,u,Ts) creates an iddata object containing a
time-domain output signal y and input signal u, respectively. Ts
specifies the sampling interval of the experimental data.

data = iddata(y,u,Ts,'Frequency',W) creates an iddata object
containing a frequency-domain output signal y and input signal u,
respectively.Ts specifies the sampling interval of the experimental data.
W specifies the iddata property 'frequency' as a vector of frequencies.

data = iddata(y,u,Ts,'P1',V1,...,'PN',VN) creates an iddata
object containing a time-domain or frequency-domain output signal y
and input signal u, respectively. Ts specifies the sampling interval of
the experimental data. 'P1',V1,...,'PN',VN are property-value pairs,
as described in “iddata Properties” on page 2-142.

data = iddata(idfrd_object) transforms an idfrd object to a
frequency-domain iddata object.

iddata
Properties

The following table describes iddata object properties and their
values. These properties are specified as property-value arguments
'P1',V1,...,'PN',VN’ in the iddata constructor, or you can set them
using the set command or dot notation. In the list below, N denotes
the number of data samples in the input and output signals, ny is the
number of output channels, nu is the number of input channels, and
Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the
entire property name. However, the portion you enter must by enough
to uniquely identify the property.

2-142

iddata

Property Name Description Value

Domain Specifies whether the data
is in the time domain or
frequency domain.

• 'Frequency' —
Frequency-domain data.

• 'Time' (Default) —
Time-domain data.

ExperimentName Name of each data set
contained in the iddata
object.

For Ne experiments, a
1-by-Ne cell array of strings.
Each cell contains the
name of the corresponding
experiment. Default names
are {'Exp1', 'Exp2',...}.

Frequency (Frequency-domain data
only) Frequency values
for defining the Fourier
Transforms of the signals.

For a single experiment, this
is an N-by-1 vector. For Ne
experiments, a 1-by-Ne cell
array and each cell contains
the frequencies of the
corresponding experiment.

InputData Name of MATLAB variable
that stores the input signal
to a system.

For nu input channels and
N data samples, this is an
N-by-nu matrix.

InputName Specifies the names of
individual input channels.

Cell array of length
nu-by-1 contains the
name string of each input
channel. Default names are
{'u1';'u2';...}.

InputUnit Specifies the units of each
input channel.

Cell array of length nu-by-1.
Each cell contains a string
that specifies the units of
each input channel.

2-143

iddata

Property Name Description Value

InterSample Specifies the behavior of
the input signals between
samples for transformations
between discrete-time and
continuous-time.

For a single experiment:

• zoh— (Default)
Zero-order hold
maintains a
piecewise-contant input
signal between samples.

• foh— First-order
hold maintains a
piecewise-linear input
signal between samples.

• bl— Band-limited
behavior specifies that
the continuous-time
input signal has zero
power above the Nyquist
frequency.

For Ne experiments,
InterSample is an nu-by-Ne
cell array. Each cell
contains one of these values
corresponding to each
experiment.

Name Name of the data set. Text string.

Notes Comments about the data
set.

Text string.

OutputData Name of MATLAB variable
that stores the output signal
from a system.

For ny output channels and
N samples, this is an N-by-ny
matrix.

2-144

iddata

Property Name Description Value

OutputName For a multiple-output
system, specifies the
names of individual output
channels.

Cell array of length
ny-by-1 contains the name
string of each output
channel. Default names are
{'y1';'y2';...}.

OutputUnit Specifies the units of each
output channel.

For ny output channels, a
cell array of length ny-by-1.
Each cell contains a string
that specifies the units of
the corresponding output
channel.

Period Period of the input signal. (Default) For a nonperiodic
signal, set to inf. For a
multiple-input signal, this
is an nu-by-1 vector and
the kth entry contains the
period of the kth input.
For Ne experiments, this
is a 1-by-Ne cell array and
each cell contains a scalar
or vector of periods for the
corresponding experiment.

SamplingInstants (Time-domain data only)
The time values in the time
vector calculated from the
properties Tstart and Ts.

For a single experiment,
this is an N-by-1 vector.
For Ne experiments, this
is a 1-by-Ne cell array
and each cell contains the
sampling instants of the
corresponding experiment.

TimeUnit (Time-domain data only)
Time unit.

A string that specifies the
time unit for the time vector.

2-145

iddata

Property Name Description Value

Ts Time interval between
successive data samples
in seconds. Must be
specified for both time-
and frequency-domain data.
For frequency-domain, it
is used to compute Fourier
transforms of the signals
as discrete-time Fourier
transforms (DTFT) with the
indicated sampling interval.

Note Your data must be
uniformly sampled.

Default value is 1. For
continuous-time data in
the frequency domain,
set to 0; the inputs and
outputs are interpreted as
continuous-time Fourier
transforms of the signals.
Note that Ts is essential also
for frequency-domain data,
for proper interpretation of
how the Fourier transforms
were computed: They are
interpreted as discrete-time
Fourier transforms
(DTFT) with the indicated
sampling interval.. For
multiple-experiment data,
Ts is a 1-by-Ne cell array
and each cell contains the
sampling interval of the
corresponding experiment.

Tstart (Time-domain data only)
Specifies the start time of
the time vector.

For a single experiment,
this is a scalar. For Ne
experiments, Tstart is a
1-by-Ne cell array and each
cell contains the starting
time of the corresponding
experiment.

2-146

iddata

Property Name Description Value

Units (Frequency-domain data
only) Frequency unit.

Specified as rad/s or Hz.For
multiexperiement data with
Ne experiments, Units is a
1-by-Ne cell array and each
cell contains the frequency
unit for each experiment.

UserData Additional comments. Text string.

See Also advice

detrend

fcat

getexp

idfilt

idfrd

plot

resample

size

2-147

ident

Purpose Open System Identification Tool GUI

Syntax ident
ident(session,path)

Description ident opens the System Identification Tool GUI.

ident(session,path) opens the saved session session in the System
Identification Tool GUI. path specifies the location of this file. Omit
path when the session file is on MATLABPATH.

Examples Open a saved session iddata1:

ident('iddata1.sid')

Open a saved session mydata in a specified directory:

ident('mydata.sid','\matlab\data\cdplayer\')

See Also midprefs

“Using the System Identification
Tool GUI”

2-148

idfilt

Purpose Filter data using user-defined passbands, general filters, or Butterworth
filters

Syntax Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Description Z is the data, defined as an iddata object. Zf contains the filtered data
as an iddata object. The filter can be defined in three ways:

• As an explicit system that defines the filter,

filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO idmodel or LTI model object. Alternatively the
filter can be defined as a cell array {A,B,C,D} of SISO state-space
matrices or as a cell array {num,den} of numerator/denominator
filter coefficients.

• As a vector or matrix that defines one or several passbands,

filter=[[wp1l,wp1h];[wp2l,wp2h];;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband in rad/s. A
filter is constructed that gives the union of these passbands. For
time-domain data, it is computed as cascaded Butterworth filters or
order NF. The default value of NF is 5.

For example, to define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.

• For frequency-domain data, only the frequency response of the filter
can be specified:

filter = Wf

2-149

idfilt

Here Wf is a vector of possibly complex values that define the filter’s
frequency response, so that the inputs and outputs at frequency
Z.Frequency(kf) are multiplied by Wf(kf). Wf is a column vector
of length = number of frequencies in Z. If the data object has several
experiments, Wf is a cell array of length = # of experiments in Z.

For time-domain data, the filtering is carried out in the time domain
as causal filtering as default. This corresponds to a last argument
causality = 'causal'. With causality = 'noncausal', a
noncausal, zero-phase filter is used for the filtering (corresponding to
filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband, this gives
ideal, zero-phase filtering (“brickwall filters”). Frequencies that have
been assigned zero weight by the filter (outside the passband, or via the
frequency response) are removed from the iddata object Zf.

It is common practice in identification to select a frequency band where
the fit between model and data is concentrated. Often this corresponds
to bandpass filtering with a passband over the interesting breakpoints
in a Bode diagram. For identification where a disturbance model is
also estimated, it is better to achieve the desired estimation result by
using the property 'Focus' (see Algorithm Properties) than just to
prefilter the data. The proper values for 'Focus' are the same as the
argument filter in idfilt.

Algorithm The Butterworth filter is the same as butter in the Signal Processing
Toolbox product. Also, the zero-phase filter is equivalent to filtfilt
in that toolbox.

References Ljung (1999), Chapter 14.

See Also Algorithm Properties

iddata

2-150

idfrd

Purpose Frequency-response data or model

Syntax h = idfrd(Response,Freq,Ts)
h = idfrd(Response,Freq,Ts,...

'CovarianceData',Covariance,'SpectrumData',Spec,...
'NoiseCovariance',Speccov)

h = idfrd(Response,Freq,Ts,...
'P1',V1,'PN',VN)

h = idfrd(mod)
h = idfrd(mod,Freqs)

Description h = idfrd(Response,Freq,Ts) constructs an idfrd object that stores
the frequency response Response of a linear system at frequency values
Freq. Ts is the sampling time interval. For a continuous-time system,
set Ts=0.

h = idfrd(Response,Freq,Ts,...
'CovarianceData',Covariance,'SpectrumData',Spec,...
'NoiseCovariance',Speccov) also stores the uncertainty of the

response Covariance, the spectrum of the additive disturbance (noise)
Spec, and the uncertainty of the noise Speccov.

h = idfrd(Response,Freq,Ts,...
'P1',V1,'PN',VN) constructs an idfrd object that stores a

frequency-response model with properties specified by the idfrd model
property-value pairs.

h = idfrd(mod) converts a System Identification Toolbox or Control
System Toolbox linear model to frequency-response data at default
frequencies, including the output noise spectra and their covariance. If
the linear model has an input-to-output delay, this delay is converted
to a phase lag.

h = idfrd(mod,Freqs) converts a System Identification Toolbox or
Control System Toolbox linear model to frequency-response data at
frequencies Freqs.

For a model

2-151

idfrd

stores the transfer function estimate G

as well as the spectrum of the additive noise () at the output

where is the estimated variance of e(t), and T is the sampling interval.

Creating idfrd from Given Responses

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being
the number of outputs, nu the number of inputs, and Nf the number of
frequencies (that is, the length of Freqs). Response(ky,ku,kf) is thus
the complex-valued frequency response from input ku to output ky at
frequency ω=Freqs(kf). When defining the response of a SISO system,
Response can be given as a vector.

Freqs is a column vector of length Nf containing the frequencies of the
response.

Ts is the sampling interval. T = 0 means a continuous-time model.

Covariance is a 5-D array containing the covariance of the frequency
response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is
such that Covariance(ky,ku,kf,:,:) is the 2-by-2 covariance matrix
of the response Response(ky,ku,kf). The 1-1 element is the variance
of the real part, the 2-2 element is the variance of the imaginary part,
and the 1-2 and 2-1 elements are the covariance between the real and
imaginary parts. squeeze(Covariance(ky,ku,kf,:,:)) thus gives the
covariance matrix of the corresponding response.

The information about spectrum is optional. The format is as follows:

spec is a 3-D array of dimension ny-by-ny-by-Nf, such that
spec(ky1,ky2,kf) is the cross spectrum between the noise at output
ky1 and the noise at output ky2, at frequency Freqs(kf). When ky1 =

2-152

idfrd

ky2 the (power) spectrum of the noise at output ky1 is thus obtained.
For a single-output model, spec can be given as a vector.

speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that
speccov(ky1,ky1,kf) is the variance of the corresponding power
spectrum. Normally, no information is included about the covariance of
the nondiagonal spectrum elements.

If only SpectrumData is to be packaged in the idfrd object, set
Response = [].

Creating idfrd from a Given Model

idfrd can also be computed from a given model mod (defined as any
idmodel object).

If the frequencies Freqs are not specified, a default choice is made based
on the dynamics of the model mod.

If mod has InputDelay different from zero, these are appended as phase
lags, and h will then have an InputDelay of 0.

The estimated covariances are computed using the Gauss approximation
formula from the uncertainty information in mod. For models with
complicated parameter dependencies, numerical differentiation is
applied. The step sizes for the numerical derivatives are determined
by nuderst.

Frequency responses for submodels can be obtained by the standard
subreferencing, h = idfrd(m(2,3)). See idmodel. In particular,
h = idfrf(m('measured')) gives an h that just contains the
ResponseData (G) and no spectra. Also h = idfrd(m('noise')) gives
an h that just contains SpectrumData.

The idfrd models can be graphed with bode, ffplot, and nyquist,
which all accept mixtures of idmodel and idfrd models as arguments.
Note that spa, spafdr, and etfe return their estimation results as
idfrd objects.

2-153

idfrd

idfrd
Properties

• ResponseData: 3-D array of the complex-valued frequency response
as described above. For SISO systems use Response(1,1,:) to
obtain a vector of the response data.

• Frequency: Column vector containing the frequencies at which the
responses are defined.

• CovarianceData: 5-D array of the covariance matrices of the
response data as described above.

• SpectrumData: 3-D array containing power spectra and cross spectra
of the output disturbances (noise) of the system.

• NoiseCovariance: 3-D array containing the variances of the power
spectra, as explained above.

• Units: Unit of the frequency vector. Can assume the values 'rad/s'
and 'Hz'.

• Ts: Scalar denoting the sampling interval of the model whose
frequency response is stored. 'Ts' = 0 means a continuous-time
model.

• Name: An optional name for the object.

• InputName: String or cell array containing the names of the input
channels. It has as many entries as there are input channels.

• OutputName: Correspondingly for the output channels.

• InputUnit: Units in which the input channels are measured. It has
the same format as 'InputName'.

• OutputUnit: Correspondingly for the output channels.

• InputDelay: Row vector of length equal to the number of input
channels. Contains the delays from the input channels. These should
thus be appended as phase lags when the response is calculated.
This is done automatically by freqresp, bode, ffplot, and nyquist.
Note that if the idfrd is calculated from an idmodel, possible input
delays in that model are converted to phase lags, and the InputDelay
of the idfrd model is set to zero.

2-154

idfrd

• Notes: An arbitrary field to store extra information and notes about
the object.

• UserData: An arbitrary field for any possible use.

• EstimationInfo: Structure that contains information about the
estimation process that is behind the frequency data. It contains the
following fields (see also the reference page for EstimationInfo).

- Status: Gives the status of the model, for example, 'Not
estimated'.

- Method: The identification routine that created the model.

- WindowSize: If the model was estimated by spa, spafdr, or etfe,
the size of window (input argument M, the resolution parameter)
that was used. This is scalar or a vector.

- DataName: Name of the data set from which the model was
estimated.

- DataLength: Length of this data set.

Note that you can set or retrieve all properties either with the set and
get commands or by subscripts. Autofill applies to all properties and
values, and these are case insensitive:

h.ts = 0
loglog(h.fre,squeeze(h.spe(2,2,:)))

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idfrd.

SubreferencingThe different channels of the idfrd are retrieved by subreferencing.

h(outputs,inputs)

h(2,3) thus contains the response data from input channel 3 to output
channel 2, and, if applicable, the output spectrum data for output
channel 2. The channels can also be referred to by their names, as in
h('power',{'voltage', 'speed'}).

2-155

idfrd

h('m')

contains the information for measured inputs only, that is, just
ResponseData, while

h('n')

('n' for 'noise') just contains SpectrumData.

Horizontal
Concatenation

Adding input channels,

h = [h1,h2,...,hN]

creates an idfrd model h, with ResponseData containing all the input
channels in h1,...,hN. The output channels of hk must be the same, as
well as the frequency vectors. SpectrumData is ignored.

Vertical
Concatenation

Adding output channels,

h = [h1;h2;... ;hN]

creates an idfrd model h with ResponseData containing all the output
channels in h1, h2,...,hN. The input channels of hk must all be the
same, as well as the frequency vectors. SpectrumData is also appended
for the new outputs. The cross spectrum between output channels is
then set to zero.

Converting
to iddata

You can convert an idfrd object to a frequency-domain iddata object by

Data = iddata(Idfrdmodel)

See iddata.

Examples Compare the results from spectral analysis and an ARMAX model.

m = armax(z,[2 2 2 1]);
g = spa(z)
g = spafdr(z,[],{0,10})

2-156

idfrd

bode(g,m)

Compute separate idfrd models, one containing the frequency function
and the other the noise spectrum.

g = idfrd(m('m'))
phi = idfrd(m('n'))

See Also bode

etfe

ffplot

freqresp

nyquist

spa

spafdr

2-157

idgrey

Purpose Linear ODE (grey-box model) with known and unknown parameters

Syntax m = idgrey(MfileName,ParameterVector,CDmfile)
m = idgrey(MfileName,ParameterVector,CDmfile,FileArgument,Ts,...
'Property1',Value1,...,'PropertyN',ValueN)

Description The function idgrey is used to create arbitrarily parameterized
state-space models as idgrey objects.

MfileName is the name of an M-file that defines how the state-space
matrices depend on the parameters to be estimated. The format of this
M-file is given by

[A,B,C,D,K,X0] = mymfile(pars,Tsm,Auxarg)

and is further discussed below.

ParameterVector is a column vector of the nominal/initial parameters.
Its length must be equal to the number of free parameters in the model
(that is, the argument pars in the example below).

The argument CDmfile describes how the user-written M-file handles
continuous and discrete-time models. It takes the following values:

• CDmfile = 'cd': The M-file returns the continuous-time state-space
matrices when called with the argument Tsm = 0. When called with
a value Tsm > 0, the M-file returns the discrete-time state-space
matrices, obtained by sampling the continuous-time system with
sampling interval Tsm. The M-file must consequently in this case
include the sampling procedure.

• CDmfile = 'c'. The M-file always returns the continuous-time
state-space matrices, no matter the value of Tsm. In this case the
toolbox’s estimation routines will provide the sampling when you are
fitting the model to discrete-time data.

• CDmfile = 'd'. The M-file always returns discrete-time state-space
matrices that may or may not depend on Tsm.

2-158

idgrey

The argument FileArgument corresponds to the auxiliary argument
Auxarg in the user-written M-file. It can be used to handle several
variants of the model structure, without having to edit the M-file. If it
is not used, enter FileArgument = []. (Default.)

Ts denotes the sampling interval of the model. Its default value is Ts =
0, that is, a continuous-time model.

The idgrey object is a child of idmodel. Therefore any idmodel
properties can be set as property name/property value pairs in the
idgrey command. They can also be set by the command set, or by
subassignment, as in

m.InputName = {'speed','voltage'}
m.FileArgument = 0.23

There are also two properties, DisturbanceModel and InitialState,
that can be used to affect the parameterizations of K and X0, thus
overriding the outputs from the M-file.

idgrey
Properties

• MfileName: Name of the user-written M-file.

• CDmfile: How this file handles continuous and discrete-time models
depending on its second argument, T.

- CDmfile = 'cd'means that theM-file returns the continuous-time
state-space model matrices when the argument T = 0, and the
discrete-time model, obtained by sampling with sampling interval
T, when T > 0.

- CDmfile = 'c' means that the M-file always returns
continuous-time model matrices, no matter the value of T.

- CDmfile = 'd'means that the M-file always returns discrete-time
model matrices that may or may not depend on the value of T.

• FileArgument: Possible extra input arguments to the user-written
M-file.

• DisturbanceModel: Affects the parameterization of the K matrix. It
can assume the following values:

2-159

idgrey

- 'Model': This is the default. It means that the K matrix obtained
from the user-written M-file is used.

- 'Estimate': The K matrix is treated as unknown and all its
elements are estimated as free parameters.

- 'Fixed': The K matrix is fixed to a given value.

- 'None': The K matrix is fixed to zero, thus producing an
output-error model.

Note that in the three last cases the output K from the user-written
M-file is ignored. The estimated/fixed value is stored internally and
does not change when the model is sampled, resampled, or converted
to continuous time. Note also that this estimated value is tailored
only to the sampling interval of the data.

• InitialState: Affects the parameterization of the X0 vector. It can
assume the following values:

- 'Model': This is the default. It means that the X0 vector is
obtained from the user-written M-file.

- 'Estimate': The X0 matrix is treated as unknown and all its
elements are estimated as free parameters.

- 'Fixed': The X0 vector is fixed to a given value.

- 'Backcast': The X0 vector is estimated using a backcast operation
analogous to the idss case.

- 'Auto': Makes a data-dependent choice among 'Estimate',
'Backcast', and 'Model'.

• A, B, C, D, K, and X0: The state-space matrices. For idgreymodels, only
'K' and 'X0' can be set; the others can only be retrieved. The set 'K'
and 'X0' are relevant only when DisturbanceModel/InitialState
are Estimate or Fixed.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations of the
state-space matrices. These cannot be set, only retrieved.

2-160

idgrey

In addition, any idgrey object also has all the properties of idmodel.
See Algorithm Properties and the reference page for idmodel.

Note that you can set or retrieve all properties using either the set
and get commands or subscripts. Autofill applies to all properties and
values, and they are case insensitive.

m.fi = 10;
set(m,'search','gn')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

M-File
Details

The model structure corresponds to the general linear state-space
structure

Here is the time derivative for a continuous-time model and
for a discrete-time model.

The matrices in this time-discrete model can be parameterized in an
arbitrary way by the vector . Write the format for the M-file as follows:

[A,B,C,D,K,x0] = mymfile(pars,T,Auxarg)

Here the vector pars contains the parameters , and the output
arguments A, B, C, D, K, and x0 are the matrices in the model description
that correspond to this value of the parameters and this value of the
sampling interval T.

T is the sampling interval, and Auxarg is any variable of auxiliary
quantities with which you want to work. (In that way you can change
certain constants and other aspects in the model structure without

2-161

idgrey

having to edit the M-file.) Note that the two arguments T and Auxarg
must be included in the function head of the M-file, even if they are
not used within the M-file.

A comment about CDmfile: If a continuous-time model is sought, it
is easiest to let the M-file deliver just the continuous-time model,
that is, have CDmfile = 'c' and rely upon the toolbox’s routines for
the proper sampling. Similarly, if the underlying parameterization is
indeed discrete time, it is natural to deliver the discrete-time model
matrices and let CDmfile = 'd'. If the underlying parameterization
is continuous, but you prefer for some reason to do your own sampling
inside the M-file in accordance with the value of T, then let your M-file
deliver the continuous-time model when called with T = 0, that is,
the alternative CMmfile = 'cd'. This avoids sampling and then
transforming back (using d2c) to find the continuous-time model.

idgrey
Definition
of States

The states of an idgrey model are defined explicitly by the user in the
M-file or MEX-file (as specified in MfileName property) storing the
model structure. The concept of states is useful for functions such as
sim, predict, compare and findstates.

Examples In this example, you use the M-file mynoise given in “Example –
Estimating a Discrete-Time Grey-Box Model with Parameterized
Disturbance” to obtain a physical parameterization of the Kalman
gain. You estimate the unknown parameters of this model using the
estimation data z.

mn = idgrey('mynoise',[0.1,-2,1,3,0.2]','d',1)
m = pem(z,mn)

2-162

idinput

Purpose Generate input signals

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

Description idinput generates input signals of different kinds, which are typically
used for identification purposes. u is returned as a matrix or column
vector.

For further use in the toolbox, we recommend that you create an iddata
object from u, indicating sampling time, input names, periodicity, and
so on:

u = iddata([],u);

N determines the number of generated input data. If N is a scalar, u is a
column vector with this number of rows.

N = [N nu] gives an input with nu input channels each of length N.

N = [P nu M] gives a periodic input with nu channels, each of length
M*P and periodic with period P.

Default is nu = 1 and M = 1.

type defines the type of input signal to be generated. This argument
takes one of the following values:

• type = 'rgs': Gives a random, Gaussian signal.

• type = 'rbs': Gives a random, binary signal. This is the default.

• type = 'prbs': Gives a pseudorandom, binary signal.

• type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument
band. For the choices type = 'rs', 'rbs', and 'sine', this argument
is a row vector with two entries

2-163

idinput

band = [wlow, whigh]

that determine the lower and upper bound of the passband. The
frequencies wlow and whigh are expressed in fractions of the Nyquist
frequency. A white noise character input is thus obtained for band =
[0 1], which is also the default value.

For the choice type = 'prbs',

band = [0, B]

where B is such that the signal is constant over intervals of length 1/B
(the clock period). In this case the default is band = [0 1].

The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu
for the choices type = 'rbs', 'prbs', and 'sine'. For type = 'rgs',
the signal level is such that minu is the mean value of the signal, minus
one standard deviation, while maxu is the mean value plus one standard
deviation. Gaussian white noise with zero mean and variance one is
thus obtained for levels = [-1, 1], which is also the default value.

Some PRBS Aspects

If more than one period is demanded (that is, M > 1), the length of the
data sequence and the period of the PRBS signal are adjusted so that an
integer number of maximum length PRBS periods is always obtained. If
M = 1, the period of the PRBS signal is chosen to that it is longer than
P = N. In the multiple-input case, the signals are maximally shifted.
This means P/nu is an upper bound for the model orders that can be
estimated with such a signal.

Some Sine Aspects

In the 'sine' case, the sinusoids are chosen from the frequency grid

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P

2-164

idinput

intersected with pi*[band(1) band(2)]. For Grid_Skip, see below.
For multiple-input signals, the different inputs use different frequencies
from this grid. An integer number of full periods is always delivered.
The selected frequencies are obtained as the second output argument,
freqs, where row ku of freqs contains the frequencies of input number
ku. The resulting signal is affected by a fifth input argument, sinedata

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

meaning that No_of_Sinusoids is equally spread over the indicated
band. No_of_Trials (different, random, relative phases) are tried until
the lowest amplitude signal is found.

Default: sinedata = [10,10,1];

Grid_Skip can be useful for controlling odd and even frequency
multiples, for example, to detect nonlinearities of various kinds.

Algorithm Very simple algorithms are used. The frequency contents are achieved
for 'rgs' by an eighth-order Butterworth, noncausal filter, using
idfilt. This is quite reliable. The same filter is used for the 'rbs'
case, before making the signal binary. This means that the frequency
contents are not guaranteed to be precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread
over the chosen grid, and each sinusoid is given a random phase. A
number of trials are made, and the phases that give the smallest signal
amplitude are selected. The amplitude is then scaled so as to satisfy
the specifications of levels.

References See Söderström and Stoica (1989), Chapter C5.3. For a general
discussion of input signals, see Ljung (1999), Section 13.3.

Examples Create an input consisting of five sinusoids spread over the whole
frequency interval. Compare the spectrum of this signal with that of its
square. The frequency splitting (the square having spectral support at
other frequencies) reveals the nonlinearity involved:

2-165

idinput

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
ffplot(etfe(u),'r*',etfe(u2),'+')

2-166

idmdlsim

Purpose Simulate idmodel objects using Simulink software

Syntax idmdlsim

Description Typing idmdlsim launches the Idmodel Simulink block. By clicking the
block you can specify the idmodel to simulate, whether to include initial
state values, and whether to add noise to the simulation in accordance
with the model’s own noise description.

See Also compare

pe

predict

sim

simsd

2-167

idmodel

Purpose Superclass for linear models

Description idmodel is an object that you do not deal with directly. It contains all the
common properties of the model objects idarx, idgrey, idpoly, idproc,
and idss, which are returned by the different estimation routines.

Basic Use

If you just estimate models from data, the model objects should be
transparent. All parametric estimation routines return idmodel results.

m = arx(Data,[2 2 1])

The model m contains all relevant information. Just typing m will give a
brief account of the model. present(m) also gives information about the
uncertainties of the estimated parameters. get(m) gives a complete list
of model properties.

Most of the interesting properties can be directly accessed by
subreferencing:

m.a
m.da

See the property list obtained by get(m), as well as the property
lists of idgrey, idarx, idpoly, and idss in Chapter 2, “Functions –
Alphabetical List” for more details on this. See also idprops.

The characteristics of the model m can be directly examined and
displayed by commands like impulse, step, bode, nyquist, and pzmap.
The quality of the model is assessed by commands like compare and
resid. When you have Control System Toolbox software installed, you
can use view(m) to access various display functions.

To extract state-space matrices, transfer function polynomials, etc., use
the commands arxdata, polydata, tfdata, ssdata, and zpkdata.

To compute the frequency response of the model, use the commands
idfrd and freqresp.

2-168

idmodel

Creating and Modifying Model Objects

If you want to define a model to use, for example, for simulating data,
you need to use the model creator functions:

• idarx, for multivariable ARX models

• idgrey, for user-defined grey-box state-space models

• idpoly, for single-output polynomial models

• idproc, for simple, continuous-time process models

• idss, for state-space models

If you want to estimate a state-space model with a specific internal
parameterization, you need to create an idss model or an idgrey
model. See the reference pages for these functions.

Dealing with Input and Output Channels

For multivariable models, you construct submodels containing a subset
of inputs and outputs by simple subreferencing. The outputs and input
channels can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([]) to denote
no channels. The channels can be referenced by number or by name.
For several names, you must use a cell array, such as

m3 = m('position',{'power','speed'})

or

m3 = m(3,[1 4])

Thus m3 is the model obtained from m by looking at the transfer
functions from input numbers 1 and 4 (with input names ’power’ and
’speed’) to output number 3 (with name position).

2-169

idmodel

For a single-output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single-input model,

m5 = m(outputs)

selects the indicated output channels.

Subreferencing is quite useful, for example, when a plot of just some
channels is desired.

Noise Channels

The estimated models have two kinds of input channels: the measured
inputs u and the noise inputs e. For a general linear model m, we have

where u is the nu-dimensional vector of measured input channels and e
is the ny-dimensional vector of noise channels. The covariance matrix of
e is given by the property 'NoiseVariance'. Occasionally this matrix
is written in factored form,

Λ = LLT

This means that e can be written as

e Lv=

where v is white noise with identity covariance matrix (independent
noise sources with unit variances).

If m is a time series (nu = 0), G is empty and the model is given by

For the model m, the restriction to the transfer function matrix G is
obtained by

2-170

idmodel

m1 = m('measured') or just m1 = m('m')

Then e is set to 0 and H is removed.

Analogously,

m2 = m('noise') or just m2 = m('n')

creates a time-series model m2 from m by ignoring the measured input.
That is, m2 describes the signal He.

For a system with measured inputs, bode, step, and other
transformation and display functions deal with the transfer function
matrix G. To obtain or graph the properties of the disturbance model
H, it is therefore important to make the transformations m('n'). For
example,

bode(m('n'))

plots the additive noise spectra according to the model m, while

bode(m)

just plots the frequency responses of G.

To study the noise contributions in more detail, it is useful to convert
the noise channels to measured channels, using the command noisecnv.

m3 = noisecnv(m)

This creates a model m3 with all input channels, both measured u and
noise sources e, treated as measured signals. That is, m3 is a model
from u and e to y, describing the transfer functions G and H. The
information about the variance of the innovations e is lost. For example,
studying the step response from the noise channels does not take into
consideration how large the noise contributions actually are.

To include that information, e should first be normalized, , so
that becomes white noise with an identity covariance matrix.

2-171

idmodel

m4 = noisecnv(m,'Norm')

This creates a model m4 where u and v are treated as measured signals.

For example, the step responses from v to y will now reflect the typical
size of the disturbance influence because of the scaling by L. In both
cases, the previous noise sources that have become regular inputs will
automatically get input names that are related to the corresponding
output. The unnormalized noise sources e have names like 'e@ynam1'
(noise e at output channel ynam1), while the normalized sources v are
called 'v@ynam1'.

Retrieving Transfer Functions

The functions that retrieve transfer function properties, ssdata,
tfdata, and zpkdata, behave, as follows, for a model with measured
inputs. (fcn is ssdata, tfdata, or zpkdata.)

fcn(m) returns the properties of G (ny outputs and nu inputs).

fcn(m('n')) returns the properties of the transfer function H (ny
outputs and ny inputs).

fcn(noisecnv(m,'Norm')) returns the properties of the transfer
function [G HL} (ny outputs and ny+nu inputs). Analogously,

m1 = m('n');
fcn(noisecnv(m1,'Norm'))

returns the properties of the transfer function HL (ny outputs and ny
inputs).

If m is a time-series model, fcn(m) returns the properties of H, while

fcn(noisecnv(m,'Norm'))

returns the properties of HL.

2-172

idmodel

Note that the estimated covariance matrix NoiseVariance itself is
uncertain. This means that the uncertainty information about H is
different from that of HL.

idmodel
Properties

In the list below, ny is the number of output channels, and nu is the
number of input channels:

• Name: An optional name for the data set. An arbitrary string.

• OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1
containing the names of the output and input channels. For estimated
models, these are inherited from the data. If not specified, they are
given default names {'y1','y2',...} and {'u1','u2',...}.

• OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1
containing the units of the output and input channels. Inherited
from data for estimated models.

• TimeUnit: Unit for the sampling interval.

• Ts: Sampling interval. A nonnegative scalar. Ts = 0 denotes
a continuous-time model. Note that changing just Ts will not
recompute the model parameters. Use c2d and d2c for recomputing
the model to other sampling intervals.

• ParameterVector: Vector of adjustable parameters in the model
structure. Initial/nominal values or estimated values, depending on
the status of the model. A column vector.

• PName: The names of the parameters. A cell array of the length of
the parameter vector. If not specified, it will contain empty strings.
See also setpname.

• CovarianceMatrix: Estimated covariance matrix of the parameter
vector. For a nonestimated model this is the empty matrix. For
state-space models in the 'Free' parameterization the covariance
matrix is also the empty matrix, since the individual matrix elements
are not identifiable then. Instead, in this case, the covariance
information is hidden (in the hidden property 'Utility') and
retrieved by the relevant functions when necessary. Setting

2-173

idmodel

CovarianceMatrix to 'None' inhibits calculation of covariance and
uncertainty information. This can save substantial time for certain
models.

• NoiseVariance: Covariance matrix of the noise source e. An
ny-by-ny matrix.

• InputDelay: Vector of size nu-by-1, containing the input delay from
each input channel. For a continuous-time model (Ts = 0) the delay
is measured in TimeUnit, while for discrete-time models (Ts > 0) the
delay is measured as the number of samples. Note the difference
between InputDelay and nk (which is a property of idarx, idss,
and idpoly). 'Nk' is a model structure property that tells the
model structure to include such an input delay. In that case, the
corresponding state-space matrices and polynomials will explicitly
contain Nk input delays. The property InputDelay, on the other
hand, is an indication that in addition to the model as defined, the
inputs should be shifted by the given amount. InputDelay is used
by sim and the estimation routines to shift the input data. When
computing frequency responses, the InputDelay is also respected.
Note that InputDelay can be both positive and negative.

• Algorithm: See the reference page for Algorithm Properties.

• EstimationInfo: See the reference page for EstimationInfo.

• Notes: An arbitrary field to store extra information and notes about
the object.

• UserData: An arbitrary field for any possible use.

Note All properties can be set or retrieved either by these commands
or by subscripts. Autofill applies to all properties and values, and is
case insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

2-174

idmodel

SubreferencingThe outputs and input channels can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([]) to denote
no channels. The channels can be referenced by number or by name.
For several names, you must use a cell array.

m2 = m('y3',{'u1','u4'})
m3 = m(3,[1 4])

For a single output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single input model,

m5 = m(outputs)

selects the indicated output channels.

The string 'measured' (or any abbreviation like 'm') means the
measured input channels.

m4 = m(3,'m')
m('m') is the same as m(:,'m')

Similarly, the string 'noise' (or any abbreviation) refers to the noise
input channels. See “Noise Channels” on page 2-170 for more details.

Horizontal
Concatenation

Adding input channels,

m = [m1,m2,...,mN]

creates an idmodel object m, consisting of all the input channels in
m1,... mN. The output channels of mk must be the same.

2-175

idmodel

Vertical
Concatenation

Adding output channels,

m = [m1;m2;... ;mN]

creates an idmodel object m consisting of all the output channels in m1,
m2, ..mN. The input channels of mk must all be the same.

Online
Help
Functions

Type idhelp idmodel, idprops idmodel, idprops idmodel
algorithm.

See Also Algorithm Properties

EstimationInfo

compare

idarx

idgrey

idpoly

idproc

idss

noisecnv

2-176

idnlarx

Purpose Nonlinear black-box ARX model

Syntax m = idnlarx([na nb nk])
m = idnlarx([na nb nk],Nonlinearity)
m = idnlarx([na nb nk],Nonlinearity,...

'PropertyName',PropertyValue)

Description Represents nonlinear ARX model, including model structure and
parameter values.

Typically, you use the nlarx command to both construct the idnlarx
object and estimate the model parameters. You can configure the
model properties directly in the nlarx syntax. For information about
the nonlinear ARX model structure, see “Structure of Nonlinear ARX
Models”.

You can also use the idnlarx constructor to create the nonlinear ARX
model structure, and then estimate the parameters of this model using
nlarx or pem.

The idnlarx object has “idnlarx Properties” on page 2-178, including:

• “idnlarx Algorithm Properties” on page 2-181

• “idnlarx Advanced Algorithm Properties” on page 2-185

• “idnlarx EstimationInfo Properties” on page 2-186

Construction m = idnlarx([na nb nk]) creates an idnlarx object. na, nb, and
nk are positive integers that specify model orders and delays. For ny
output channels and nu input channels, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to compute the
ith output. nb and nk are ny-by-nu matrices, where each row defines the
orders for the corresponding output.

m = idnlarx([na nb nk],Nonlinearity) specifies the nonlinearity
estimator as 'wavenet' (or 'wave'), 'sigmoidnet' (or 'sigm'),
'treepartition' (or 'tree'), or 'linear' (or []). For a neural
network, specify the network object you created using the Neural

2-177

idnlarx

Network Toolbox software. For a custom network, specify the custom
network you created. For supported nonlinearities, see “Nonlinearity
Estimators for Nonlinear ARX Models”.

m = idnlarx([na nb nk],Nonlinearity,...
'PropertyName',PropertyValue) creates an idnlarx object using

options specified as idnlarx property name and value pairs.

idnlarx
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit
get(m,'TimeUnit')
% Get value of Nonlinearity property
m.Nonlinearity

You can specify property name-value pairs in the model estimator or
constructor to configure the model structure and estimation algorithm.

The following table summarizes idnlarx model properties. The general
idnlmodel properties also apply to this nonlinear model object (see
the corresponding reference page).

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlarx Algorithm Properties” on page 2-181.

CustomRegressors Custom expression in terms of standard regressors.
Assignable values:

• Cell array of strings. For example:
{'y1(t-3)^3','y2(t-1)*u1(t-3)','sin(u3(t-2))'}.

• Object array of customreg objects. Create these objects
using commands such as customreg and polyreg. For more
information, see the corresponding reference pages.

2-178

idnlarx

Property Name Description

EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlarx EstimationInfo Properties”
on page 2-186.

Focus Specifies 'Prediction' or 'Simulation'.
Assignable values:

• 'Prediction' (default)—The estimation algorithm

minimizes y y− ˆ , where ŷ is the 1–step ahead predicted
output. This algorithm does not necessarily minimize the
simulation error.

• 'Simulation'—The estimation algorithm minimizes
the simulation error and optimizes the results of

compare(data,model,Inf). That is, when computing ŷ ,
y in the regressors in F are replaced by values simulated
from the input only. 'Simulation' requires that the model
include only differentiable nonlinearities.

Note If your model includes the treepartition or neuralnet
nonlinearity, the algorithm always uses 'prediction',
regardless of the Focus value. If your model includes the
wavenet nonlinearity, the first estimation of this model uses
'prediction'.

2-179

idnlarx

Property Name Description

NonlinearRegressors Specifies which standard or custom regressors enter the
nonlinear block. For multiple-output models, use cell array of
ny elements (ny = number of model outputs). For each output,
assignable values are:

• 'all'—All regressors enter the nonlinear block.

• 'search'—Specifies that the estimation algorithm searches
for the best regressor combination. This is useful when you
want to reduce a large number of regressors entering the
nonlinear function block or the nonlinearity estimator.

• 'input' — Input regressors only.

• 'output' — Output regressors only.

• 'standard' — Standard regressors only.

• 'custom' — Custom regressors only.

• '[]'— No regressors enter the nonlinear block.

• A vector of indices: Specifies the indices of the regressors
that should be used in the nonlinear estimator. To
determine the order of regressors, use getreg.

Nonlinearity Nonlinearity estimator object. Assignable values include
wavenet (default), sigmoidnet, treepartition, customnet,
neuralnet, and linear. If the model contains only one
regressor, you can also use saturation, deadzone, pwlinear,
or poly1d.

For ny outputs, Nonlinearity is an ny-by-1 array. For
example, [sigmoidnet;wavenet] for a two-output model.

2-180

idnlarx

Property Name Description

When you specify a scalar object, this nonlinearity applies to
all outputs.

na
nb
nk

Nonlinear ARX model orders and input delays, where na is the
number of output terms, nb is the number of input terms, and
nk is the delay from input to output in terms of the number
of samples.

For ny outputs and nu inputs, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices.

idnlarx
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlarx
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlarx Advanced Algorithm
Properties” on page 2-185.

Criterion The search method of lsqnonlin supports the Trace criterion
only.

Use for multiple-output models only. Criterion can have the
following values:

• 'Det': Minimize det(E'*E), where E represents the
prediction error. This is the optimal choice in a statistical
sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

2-181

idnlarx

Property Name Description

• 'Trace': Minimize the trace of the weighted prediction
error matrix trace(E'*E*W), where E is the matrix of
prediction errors, with one column for each output, and W
is a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace(E'*E), or the
traditional least-squares criterion). You can specify the
relative weighting of prediction errors for each output using
the Weighting field of the Algorithm property. If the
model contains neuralnet or treepartition as one of its
nonlinearity estimators, weighting is not applied because
estimations are independent for each output.

Both the Det and Trace criteria are derived from a general
requirement of minimizing a weighted sum of least squares of
prediction errors. Det can be interpreted as estimating the
covariance matrix of the noise source and using the inverse of
that matrix as the weighting. You should specify the weighting
when using the Trace criterion.

If you want to achieve better accuracy for a particular channel
in MIMO models, use Trace with weighting that favors
that channel. Otherwise, use Det. If you use Det, check
cond(model.NoiseVariance) after estimation. If the matrix
is ill-conditioned, try using the Trace criterion. You can also
use compare on validation data to check whether the relative
error for different channels corresponds to your needs or
expectations. Use the Trace criterion if you need to modify the
relative errors, and check model.NoiseVariance to determine
what weighting modifications to specify.

2-182

idnlarx

Property Name Description

IterWavenet (For wavenet nonlinear estimator only)
Toggles performing iterative or noniterative estimation.
Default: 'auto'.
Assignable values:

• 'auto'— First estimation is noniterative and subsequent
estimation are iterative.

• 'On' — Perform iterative estimation only.

• 'Off'— Perform noniterative estimation only.

LimitError Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

MaxSize The number of elements (size) of the largest matrix to be
formed by the algorithm. Computational loops are used
for larger matrices. Use this value for memory/speed
trade-off.MaxSize can be any positive integer.
Default: 250000.

Note The original data matrix of u and y must be smaller
than MaxSize.

2-183

idnlarx

Property Name Description

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Subspace Gauss-Newton method.

• 'gna'— Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin'— Nonlinear least-squares method (requires
the Optimization Toolbox product). This method only
handles the 'Trace' criterion.

Tolerance Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.
Default: 0.01.

Display Toggles displaying or hiding estimation progress information
in theMATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

Weighting (For multiple-output models only)

Specifies the relative importance of outputs in MIMO models
(or reliability of corresponding data) as a positive semi-definite
matrix W. Use when Criterion = 'Trace' for weighted trace
minimization. By default, Weighting is an identity matrix of
size equal to the number of outputs.

2-184

idnlarx

idnlarx
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for 'lm'). Used by 'gn', 'lm', 'gna' and 'grad'
search methods (Algorithm.SearchMethod property)
Default: 10.
Assign a positive integer value.

2-185

idnlarx

Property Name Description

MaxFunEvals The iterations are stopped if the number of calls to the model
file exceeds this value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

idnlarx
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.

2-186

idnlarx

Property Name Description

Status Shows whether the model parameters were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and N is
the total number of samples.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

EstimationTime Duration of the estimation.

InitRandState The value of randn('state') at the last randomization of the
initial parameter vector.

Iterations Number of iterations performed by the estimation algorithm.

UpdateNorm Norm of the Gauss-Newton in the last iteration. Empty when
'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when 'lsqnonlin' is the search method.

Warning Any warnings encountered during parameter estimation.

WhyStop Reason for terminating parameter estimation iterations.

2-187

idnlarx

Definitions Nonlinear ARX Model

This block diagram represents the structure of a nonlinear ARX model:

����������
��������	

������

�

�

�������������������� �����	

������

��������	���������	

The nonlinear ARX model computes the output y in two stages:

1 Computes regressors from the current and past input values and
past output data.

In the simplest case, regressors are delayed inputs and outputs, such
as u(t-1) and y(t-3)—called standard regressors. You can also specify
custom regressors, which are nonlinear functions of delayed inputs
and outputs. For example, tan(u(t-1)) or u(t-1)*y(t-3).

By default, all regressors are inputs to both the linear and the
nonlinear function blocks of the nonlinearity estimator. You can
choose a subset of regressors as inputs to the nonlinear function block.

2 The nonlinearity estimator block maps the regressors to the model
output using a combination of nonlinear and linear functions.
You can select from available nonlinearity estimators, such as
tree-partition networks, wavelet networks, and multi-layer neural
networks. You can also exclude either the linear or the nonlinear
function block from the nonlinearity estimator.

The nonlinearity estimator block can include linear and nonlinear
blocks in parallel. For example:

2-188

idnlarx

F x L x r d g Q x rT() () ()= − + + −()

x is a vector of the regressors. L x dT () + is the output of the linear

function block and is affine when d≠0. g Q x r()−() represents the
output of the nonlinear function block. r is the mean of the regressors x.
d is a scalar offset. Q is a projection matrix that makes the calculations
well conditioned. The exact form of F(x) depends on your choice of the
nonlinearity estimator.

Estimating a nonlinear ARX model computes the model parameter
values, such as L, r, d, Q, and other parameters specifying g. Resulting
models are idnlarx objects that store all model data, including model
regressors and parameters of the nonlinearity estimator. See the
idnlarx reference page for more information.

Definition of idnlarx States

The states of an idnlarx object are delayed input and output variables
that define the structure of the model. This toolbox requires states for
simulation and prediction using sim(idnlarx), predict(idnlarx),
and compare. States are also necessary for linearization of nonlinear
ARX models using linearize(idnlarx).

This toolbox provides a number of options to facilitate how you
specify the initial states. For example, you can use findstates and
data2state to automatically search for state values in simulation and
prediction applications. For linearization, use findop. You can also
specify the states manually.

The states of an idnlarx model are defined by the maximum delay in
each input and output variable used by the regressors. If a variable p
has a maximum delay of D samples, then it contributes D elements to
the state vector at time t: p(t-1), p(t-2), ..., p(t-D).

For example, if you have a single-input, single-output idnlarx model:

m = idnlarx([2 3 0],'wavenet', ...
'CustomRegressors', ...
{'y1(t-10)*u1(t-1)'});

2-189

idnlarx

This model has these regressors:

getreg(m)

Regressors:
y1(t-1)
y1(t-2)
u1(t)
u1(t-1)
u1(t-2)
y1(t-10)*u1(t-1)

The regressors show that the maximum delay in the output variable
y1 is 10 samples and the maximum delay in the input u1 is 2 samples.
Thus, this model has a total of 12 states:

X(t) = [y1(t-1),y2(t-2), ,y1(t-10),u1(t-1),u1(t-2)]

Note The state vector includes the output variables first, followed
by input variables.

As another example, consider the 2-output and 3-input model:

m = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0], ...
[wavenet; linear])

getreg lists these regressors:

getreg(m)

Regressors:
For output 1:

y1(t-1)

2-190

idnlarx

y1(t-2)
u1(t-1)
u1(t-2)
u2(t)
u2(t-1)
u3(t)

For output 2:
y1(t-1)
u1(t-1)
u2(t-1)
u2(t-2)
u2(t-3)
u2(t-4)
u2(t-5)

The maximum delay in output variable y1 is 2 samples, which occurs
in regressor set for output 1. The maximum delays in the three input
variables are 2, 5, and 0, respectively. Thus, the state vector is:

X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1),
u2(t-2), u2(t-3), u2(t-4), u2(t-5)]

Variables y2 and u3 do not contribute to the state vector because the
maximum delay in these variables is zero.

A simpler way to determine states by inspecting regressors is to use
getDelayInfo, which returns the maximum delays in all I/O variables
across all model outputs. For the multiple-input multiple-output model
m, getDelayInfo returns:

maxDel = getDelayInfo(m)
maxDel =

2 0 2 5 0

maxDel contains the maximum delays for all input and output variables
in the order (y1, y2, u1, u2, u3). The total number of model states is
sum(maxDel) = 9.

The set of states for an idnlarx model is not minimal.

2-191

idnlarx

Examples Create nonlinear ARX model structure with (default) wavelet network
nonlinearity:

m = idnlarx([2 2 1]) % na=nb=2 and nk=1

Create nonlinear ARX model structure with sigmoid network
nonlinearity:

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

Create nonlinear ARX model structure with no nonlinear function in
nonlinearity estimator:

m=idnlarx([2 2 1],[])

See Also addreg | customnet | customreg | findop(idnlarx) | getreg |
linear | linearize(idnlarx) | nlarx | pem | polyreg | sigmoidnet
| wavenet

Tutorials • “Example – Using nlarx to Estimate Nonlinear ARX Models”

How To • “Identifying Nonlinear ARX Models”

2-192

idnlgrey

Purpose Nonlinear ODE (grey-box model) with unknown parameters

Syntax m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m = idnlgrey('filename',Order,Parameters,InitialStates,
Ts,P1,V1,...,PN,VN)

Description idnlgrey is an object that represents the nonlinear grey-box model.

For information about the nonlinear grey-box models, see “Estimating
Nonlinear Grey-Box Models”.

The information in these reference pages summarizes the idnlgrey
model constructor and properties. It discusses the following topics:

• “idnlgrey Constructor” on page 2-193

• “idnlgrey Properties” on page 2-194

• “idnlgrey Advanced Algorithm Properties” on page 2-201

• “idnlgrey Simulation Options” on page 2-203

• “idnlgrey Gradient Options” on page 2-206

• “idnlgrey EstimationInfo Properties” on page 2-207

idnlgrey
Constructor

Use the following syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters)

m = idnlgrey('filename',Order,Parameters,InitialStates)

m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)

m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1,...,PN,VN)

The idnlgrey arguments are defined as follows:

2-193

idnlgrey

• 'filename' — Name of the M-file or MEX-file storing the model
structure (ODE file).

• Order — Vector with three entries [Ny Nu Nx], specifying the
number of model outputs Ny, the number of inputs Nu, and the
number of states Nx.

• Parameters— Parameters, specified as struct arrays, cell arrays,
or double arrays.

• InitialStates— Specified in a same way as parameters. Must be
fourth input to the idnlgrey constructor.

• The command

m = idnlgrey('filename',Order,Parameters,...
InitialStates,Ts,P1,V1,...,PN,VN)

specifies idnlgrey property-value pairs. See information on
properties of idnlgrey objects below.

Estimate the parameters of this object using pem.

idnlgrey
Properties

You can include property-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm
properties.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit
get(m,'TimeUnit')
m.TimeUnit

The following table summarizes idnlgrey model properties. The
general idnlmodel properties also apply to this nonlinear model object
(see the corresponding reference pages).

2-194

idnlgrey

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlgrey Algorithm Properties” on page 2-198.

CovarianceMatrix Covariance matrix of the estimated Parameters.
Assignable values:

• 'None' to omit computing uncertainties and save time
during parameter estimation.

• 'Estimate' to estimation covariance. Symmetric and
positive Np-by-Np matrix (or []) where Np is the number of
free model parameters.

EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlgrey EstimationInfo Properties”
on page 2-207.

FileArgument Contains auxiliary variables passed to the ODE file (M-file
or MEX-file) specified in FileName. These variables may be
used as extra inputs for specifying the state and/or output
equations. FileArgument should be specified as a cell array.
Default: {}.

FileName File name string (without extension) or a function handle
for computing the states and the outputs. If 'FileName' is
a string, then it must point to an M-file or MEX-file. For
more information about the file variables, see “Specifying the
Nonlinear Grey-Box Model Structure”.

2-195

idnlgrey

Property Name Description

InitialStates An Nx-by-1 structure array with fields as follows. Here, Nx is
the number of states of the model.

• Name: Name of the state (a string). Default value is 'x#i',
where #i is an integer in [1, Nx].

• Unit: Unit of the state (a string). Default value is ''.

• Value: Initial value of the initial state(s). Assignable values
are:

- A finite real scalar

- A finite real 1-by-Ne vector, where Ne is the number of
experiments in the data set to be used for estimation

• Minimum: Minimum value of the initial state(s). Must be
a real scalar/1-by-Ne vector of the same size as Value and
such that Minimum <= Value for all components. Default
value: -Inf(size(Value)).

• Maximum: Maximum value of the initial state(s). Must be
a real scalar/1-by-Ne vector of the same size as Value and
such that Value <= Maximum for all components. Default
value: Inf(size(Value)).

• Fixed: Specifies which component(s) of the initial state(s)
are fixed to their known values. Must be a Boolean
scalar/1-by-Ne vector of the same size as Value. Default
value: true(size(Value)) (that is, do not estimate the
initial states).

For an idnlgrey model M, the ith initial state is accessed
through M.InitialStates(i) and its subfields as
M.InitialStates(i).FIELDNAME.

2-196

idnlgrey

Property Name Description

Order Structure with following fields:

• ny— Number of outputs of the model structure.

• nu — Number of inputs of the model structure.

• nx — Number of states of the model structure.

For time series, nu is 0. For static model structures, nx is 0.

Parameters Np-by-1 structure array with information about the model
parameters containing the following fields:

• Name: Name of the parameter (a string). Default value is
'p#i', where #i is an integer in [1, Np].

• Unit: Unit of the parameter (a string). Default value is ''.

• Value: Initial value of the parameter(s). Assignable values
are:

- A finite real scalar

- A finite real column vector

- A 2-dimensional real matrix

• Minimum: Minimum value of the parameter(s). Must be a
real scalar/column vector/matrix of the same size as Value
and such that Minimum <= Value for all components. Default
value: -Inf(size(Value)).

• Maximum: Maximum value of the parameter(s). Must be a
real scalar/column vector/matrix of the same size as Value
and such that Value <= Maximum for all components. Default
value: Inf(size(Value)).

• Fixed: Specifies which component(s) of the parameter(s)
are fixed to their known values. Must be a Boolean
scalar/column vector/matrix of the same size as Value.

2-197

idnlgrey

Property Name Description

Default value: false(size(Value)), (estimate all
parameter components).

For an idnlgrey model M, the ith parameter is
accessed through M.Parameters(i) and its subfields as
M.Parameters(i).FIELDNAME.

idnlgrey
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlgrey
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlgrey Advanced Algorithm
Properties” on page 2-201.

Criterion Specifies criterion used during minimization. Criterion can
have the following values:

• 'Det': Minimize det(E'*E) where E represents the
prediction error. This is the optimal choice in a statistical
sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

• 'Trace': Minimize the trace of the weighted prediction
error matrix trace(E'*E*W), where E is the matrix of
prediction errors, with one column for each output, and W
is a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace(E'*E), or the
traditional least-sum-of-squared-errors criterion. You can

2-198

idnlgrey

Property Name Description

specify the relative weighting of prediction errors for each
output using the Weighting field of the Algorithm property.

LimitError Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Gauss-Newton method.

• 'gna'— Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin'— Nonlinear least-squares method (requires
the Optimization Toolbox product). This method handles
only the 'Trace' criterion.

Tolerance Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.
Default: 0.01.

GradientOptions A structure that specifies the options related to calculation of
gradient of the cost, “idnlgrey Gradient Options” on page 2-206.

2-199

idnlgrey

Property Name Description

SimulationOptions A structure that specifies the simulation method and related
options, as described in “idnlgrey Simulation Options” on page
2-203.

Display Toggles displaying or hiding estimation progress information
in the MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

Weighting Positive semi-definite matrix W used for weighted trace
minimization. When Criterion = 'Trace', trace(E'*E*W)
is minimized. Weighting can be used to specify relative
importance of outputs in multiple-input multiple-output
models (or reliability of corresponding data) when W is a
diagonal matrix of nonnegative values. Weighting is not
useful in single-output models. By default, Weighting is an
identity matrix of size equal to the number of outputs.

2-200

idnlgrey

Note The Criterion property setting is meaningful in multiple-output
cases only. In single-output models, the two criteria are equivalent.
Both the Det and Trace criteria are derived from a general requirement
of minimizing a weighted sum of least squares of prediction errors. The
Det criterion can be interpreted as estimating the covariance matrix of
the noise source and using the inverse of that matrix as the weighting.
You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in
multiple-input multiple-output models, you should use Trace with
weighting that favors that channel. Otherwise it is natural to use Det.
When using Det you can check cond(model.NoiseVariance) after
estimation. If the matrix is ill-conditioned, it may be more robust to
use the Trace criterion. You can also use compare on validation data
to check whether the relative error for different channels corresponds
to your needs or expectations. Use the Trace criterion if you need
to modify the relative errors, and check model.NoiseVariance to
determine what weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.

idnlgrey
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

2-201

idnlgrey

Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for 'lm'). Used by 'gn', 'lm', 'gna' and 'grad'
search methods (Algorithm.SearchMethod property)
Default: 25.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number of calls to the model
file exceeds this value.
Default: Inf.
Assign a positive integer value.

2-202

idnlgrey

Property Name Description

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

idnlgrey
Simulation
Options

The following table summarizes the fields of
Algorithm.SimulationOptions model properties.

2-203

idnlgrey

Property Name Description

AbsTol Absolute error tolerance. This scalar applies to all components
of the state vector. AbsTol applies only to the variable step
solvers.
Default: 1e-6.
Assignable value: A positive real value.

FixedStep (For fixed-step time-continuous solvers) Step size used by the
solver.
Default: 'Auto'.
Assignable values:

• 'Auto'— Automatically chooses the initial step.

• A real value such that 0<FixedStep<=1.

InitialStep (For variable-step time-continuous solvers) Specifies the initial
step at which the ODE solver starts.
Default: 'Auto'.
Assignable values:

• 'Auto'— Automatically chooses the initial step.

• A positive real value such that
MinStep<=InitialStep<=MaxStep.

MaxOrder (For ode15s) Specifies the order of the Numerical
Differentiation Formulas (NDF).
Default: 5.
Assignable values: 1, 2, 3, 4 or 5.

MaxStep (For variable-step time-continuous solvers) Specifies the
largest time step of the ODE solver.
Default: 'Auto'— 1/15 of the simulation interval.
Assignable values:

• 'Auto'— Automatically chooses the time step.

• A positive real value > MinStep.

2-204

idnlgrey

Property Name Description

MinStep (For variable-step time-continuous solvers) Specifies the
smallest time step of the ODE solver.
Default: 'Auto'.
Assignable values:

• 'Auto'— Automatically chooses the time step.

• A positive real value < MaxStep.

RelTol (For variable-step time-continuous solvers) Relative error
tolerance that applies to all components of the state vector.
The estimated error in each integration step satisfies |e(i)|
<= max(RelTol*abs(x(i)), AbsTol(i)).
Default: 1e-3 (0.1% accuracy).
Assignable value: A positive real value.

Solver ODE (Ordinary Differential/Difference Equation) solver for
solving state space equations.
A. Variable-step solvers for time-continuous idnlgrey models:

• 'ode45'— Runge-Kutta (4,5) solver for nonstiff problems.

• 'ode23'— Runge-Kutta (2,3) solver for nonstiff problems.

• 'ode113' — Adams-Bashforth-Moulton solver for nonstiff
problems.

• 'ode15s'— Numerical Differential Formula solver for stiff
problems.

• 'ode23s'—Modified Rosenbrock solver for stiff problems.

• 'ode23t' — Trapezoidal solver for moderately stiff
problems.

• 'ode23tb'— Implicit Runge-Kutta solver for stiff problems.

B. Fixed-step solvers for time-continuous idnlgrey models:

• 'ode5' — Dormand-Prince solver.

2-205

idnlgrey

Property Name Description

• 'ode4'— Fourth-order Runge-Kutta solver.

• 'ode3' — Bogacki-Shampine solver.

• 'ode2'— Heun or improved Euler solver.

• 'ode1' — Euler solver.

C. Fixed-step solvers for time-discrete idnlgrey models:
'FixedStepDiscrete'

D. General: 'Auto' — Automatically chooses one of the
previous solvers (default).

idnlgrey
Gradient
Options

The following table summarizes the fields of the
Algorithm.GradientOptions model properties. Algorithm is
a structure that specifies the estimation-algorithm options.

Property Name Description

DiffMaxChange Largest allowed parameter perturbation when computing
numerical derivatives.
Default: Inf.
Assignable value: A positive real value >'DiffMinChange'.

DiffMinChange Smallest allowed parameter perturbation when computing
numerical derivatives.
Default: 0.01*sqrt(eps).
Assignable value: A positive real value <'DiffMaxChange'.

2-206

idnlgrey

Property Name Description

DiffScheme Method for computing numerical derivatives with respect to
the components of the parameters and/or the initial state(s) to
form the Jacobian.
Default: 'Auto'
Assignable values:

• 'Auto' - Automatically chooses from the following methods.

• 'Central approximation'

• 'Forward approximation'

• 'Backward approximation'

GradientType Method used when computing derivatives (Jacobian) of the
parameters or the initial states to be estimated.
Default: 'Auto'.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'Basic'— Individually computes all numerical derivatives
required to form each column of the Jacobian.

• 'Refined' — Simultaneously computes all numerical
derivatives required to form each column of the Jacobian.

idnlgrey
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.

Property Name Description

Status Shows whether the model parameters were estimated.

2-207

idnlgrey

Property Name Description

Method Names of the solver and the optimizer used during estimation.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and
N is the total number of samples. Provides a quantitative
description of the model quality.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

EstimationTime Duration of the estimation.

InitialGuess Structure with the fields InitialStates and Parameters,
specifying the values of these quantities before the last
estimation.

Iterations Number of iterations performed by the estimation algorithm.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when SearchMethod='lsqnonlin' is the search
method.

UpdateNorm Norm of the search vector (Gauss-Newton vector) at the last
iteration. Empty when 'lsqnonlin' is the search method.

Warning Any warnings encountered during parameter estimation.

WhyStop Reason for terminating parameter estimation iterations.

2-208

idnlgrey

Definition
of
idnlgrey
States

The states of an idnlgrey model are defined explicitly by the user in
the M-file or MEX-file (as specified in the FileName property of the
model) storing the model structure . The concept of states is useful for
functions such as sim, predict, compare, and findstates.

Note The initial values of the states are configured by the
InitialStates property of the idnlgrey model.

See Also pem

getinit

setinit

getpar

setpar

2-209

idnlhw

Purpose Nonlinear black-box Hammerstein-Wiener model

Syntax m = idnlhw([nb nf nk])
m = idnlhw([nb nf nk],InputNL,OutputNL)
m = idnlhw([nb nf nk],InputNL,OutputNL,'PropertyName',

PropertyValue)

Description Represents Hammerstein-Wiener models, including model structure
and parameter values.

Typically, you use the nlhw command to both construct the idnlhw
object and estimate the model parameters. You can configure the
model properties directly in the nlhw syntax. For information
about the Hammerstein-Wiener model structure, see “Structure of
Hammerstein-Wiener Models”.

You can also use the idnlhw constructor to create the
Hammerstein-Wiener model structure, and then estimate the
parameters of this model using pem.

The idnlhw object has “idnlhw Properties” on page 2-211, including:

• “idnlhw Algorithm Properties” on page 2-212

• “idnlhw Advanced Algorithm Properties” on page 2-216

• “idnlhw EstimationInfo Properties” on page 2-218

Construction m = idnlhw([nb nf nk]) creates an idnlhw object with orders nb,
nf, and nk, specified as positive integers. nb is the number of zeros
plus 1, nf is the number of poles, and nk is the input delay. By default,
both the input and output nonlinearity estimators are piecewise linear
functions (see pwlinear). For nu inputs and ny outputs, nb, nf and, nk
are ny-by-nu matrices whose i-jth entry specifies the orders and delay of
the transfer function from the jth input to the ith output.

m = idnlhw([nb nf nk],InputNL,OutputNL) creates an idnlhw object
with specified input nonlinearity InputNL and output nonlinearity
OutputNL, where InputNL and OutputNL can be a strings or objects.

2-210

idnlhw

To use nonlinearity estimators with default settings, specify InputNL
and OutputNL using strings (such as 'wave' for wavelet network or
'sig' for sigmoid network). If you need to configure the properties of
a nonlinearity estimator, use its object representation. For supported
nonlinearities, see “Nonlinearity Estimators for Hammerstein-Wiener
Models”.

m = idnlhw([nb nf
nk],InputNL,OutputNL,'PropertyName',PropertyValue) creates
an idnlhw object using options specified as idnlhw property
name and value pairs.

idnlhw
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model B parameters
get(m,'b')
% Get value of InputNonlinearity property
m.InputNonlinearity

You can specify property name-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm.

The following table summarizes idnlhw model properties. The general
idnlmodel properties also apply to this nonlinear model object (see
the corresponding reference page).

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlhw Algorithm Properties” on page 2-212.

b B polynomial as a cell array of Ny-by-Nu elements, where Ny
is the number of outputs and Nu is the number of inputs. An
element b{i,j} is a row vector representing the numerator
polynomial for the j:th input to ith output transfer function.
It contains as many leading zeros as there are input delays.

2-211

idnlhw

Property Name Description

f F polynomial as a cell array of Ny-by-Nu elements, where Ny is
the number of outputs and Nu is the number of inputs. An
element f{i,j} is a row vector representing the denominator
polynomial for the j:th input to ith output transfer function.

LinearModel (Read only) The linear model in the linear block. For single
output, represented as an idpoly object. For multiple output,
represented as an idss object.

EstimationInfo (Read-only) Structure that stores estimation settings and
results, as described in “idnlhw EstimationInfo Properties”
on page 2-218.

InputNonlinearity Nonlinearity estimator object. Assignable values include
pwlinear (default), deadzone, wavenet, saturation,
customnet, sigmoidnet, poly1d, and unitgain. For more
information, see the corresponding reference pages.

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar
object, this nonlinearity object applies to all outputs.

OutputNonlinearity Same as InputNonlinearity.

nb
nf
nk

Model orders and input delays, where nb is the number of
zeros plus 1, nf is the number of poles, and nk is the delay
from input to output in terms of the number of samples.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu
matrices whose i-jth entry specifies the orders and delay of the
transfer function from the jth input to the ith output.

idnlhw
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlhw
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

2-212

idnlhw

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlhw Advanced Algorithm
Properties” on page 2-216.

Criterion The search method of lsqnonlin supports the Trace criterion
only.

Use for multiple-output models only. Criterion can have the
following values:

• 'Det': Minimize det(E'*E), where E represents the
prediction error. This is the optimal choice in a statistical
sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

• 'Trace': Minimize the trace of the weighted prediction
error matrix trace(E'*E*W), where E is the matrix of
prediction errors, with one column for each output, and W
is a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace(E'*E), or the
traditional least-squares criterion). You can specify the
relative weighting of prediction errors for each output using
the Weighting field of the Algorithm property. If the
model contains neuralnet or treepartition as one of its
nonlinearity estimators, weighting is not applied because
estimations are independent for each output.

Both the Det and Trace criteria are derived from a general
requirement of minimizing a weighted sum of least squares of
prediction errors. Det can be interpreted as estimating the
covariance matrix of the noise source and using the inverse of

2-213

idnlhw

Property Name Description

that matrix as the weighting. You should specify the weighting
when using the Trace criterion.

If you want to achieve better accuracy for a particular channel
in MIMO models, use Trace with weighting that favors
that channel. Otherwise, use Det. If you use Det, check
cond(model.NoiseVariance) after estimation. If the matrix
is ill-conditioned, try using the Trace criterion. You can also
use compare on validation data to check whether the relative
error for different channels corresponds to your needs or
expectations. Use the Trace criterion if you need to modify the
relative errors, and check model.NoiseVariance to determine
what weighting modifications to specify.

IterWavenet (For wavenet nonlinear estimator only)
Implicitly set to perform iterative estimation. Changing this
setting does not impact the algorithm.
Default: 'On'.

LimitError Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

2-214

idnlhw

Property Name Description

MaxSize The number of elements (size) of the largest matrix to be
formed by the algorithm. Computational loops are used for
larger matrices. Use this value for memory/speed trade-off.
MaxSize can be any positive integer. Default: 250000.

Note The original data matrix of u and y must be smaller
than MaxSize.

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Gauss-Newton method.

• 'gna'— Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin'— Nonlinear least-squares method (requires
the Optimization Toolbox product). This method handles
only the 'Trace' criterion.

Tolerance Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.
Default: 0.01.

2-215

idnlhw

Property Name Description

Display Toggles displaying or hiding estimation progress information
in the MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

Weighting Positive semi-definite matrix W used for weighted trace
minimization. When Criterion = 'Trace', trace(E'*E*W)
is minimized. Weighting can be used to specify relative
importance of outputs in multiple-input multiple-output
models (or reliability of corresponding data) when W is a
diagonal matrix of nonnegative values. Weighting is not
useful in single-output models. By default, Weighting is an
identity matrix of size equal to the number of outputs.

idnlhw
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.
Default: 1e4.
Assign a positive, real value.

2-216

idnlhw

Property Name Description

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for 'lm'). Used by 'gn', 'lm', 'gna' and 'grad'
search methods (Algorithm.SearchMethod property).
Default: 10.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number of calls to the model
file exceeds this value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

2-217

idnlhw

Property Name Description

RelImprovement The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note This does not apply when
Algorithm.SearchMethod='lsqnonlin'.

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

Note This does not apply when
Algorithm.SearchMethod='lsqnonlin'.

idnlhw
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.

Property Name Description

Status Shows whether the model parameters were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and N is
the total number of samples.

2-218

idnlhw

Property Name Description

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

WhyStop Reason for terminating parameter estimation iterations.

UpdateNorm Norm of the search vector (gn-vector) in the last iteration.
Empty when 'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when 'lsqnonlin' is the search method.

Iterations Number of iterations performed by the estimation algorithm.

Warning Any warnings encountered during parameter estimation.

InitRandState The value of randn('state') at the last randomization of the
initial parameter vector.

EstimationTime Duration of the estimation.

Definitions Hammerstein-Wiener Model Structure

This block diagram represents the structure of a Hammerstein-Wiener
model:

2-219

idnlhw

��� �������
��������	��

�

�����	
�����
��

 ���
��������	��

!

"�� #��

where:

• w(t) = f(u(t)) is a nonlinear function transforming input data u(t). w(t)
has the same dimension as u(t).

• x(t) = (B/F)w(t) is a linear transfer function. x(t) has the same
dimension as y(t).

where B and F are similar to polynomials in the linear Output-Error
model, as described in “What Are Black-Box Polynomial Models?”.

For ny outputs and nu inputs, the linear block is a transfer function
matrix containing entries:

B q

F q
j i

j i

,

,

()

()

where j = 1,2,...,ny and i = 1,2,...,nu.

• y(t) = h(x(t)) is a nonlinear function that maps the output of the linear
bock to the system output.

w(t) and x(t) are internal variables that define the input and output
of the linear block, respectively.

Because f acts on the input port of the linear block, this function is
called the input nonlinearity. Similarly, because h acts on the output
port of the linear block, this function is called the output nonlinearity.
If system contains several inputs and outputs, you must define the
functions f and h for each input and output signal.

You do not have to include both the input and the output nonlinearity in
the model structure. When a model contains only the input nonlinearity
f, it is called a Hammerstein model. Similarly, when the model contains
only the output nonlinearity h), it is called a Wiener model.

2-220

idnlhw

The nonlinearities f and h are scalar functions, one nonlinearity for
each input and output channel.

The Hammerstein-Wiener model computes the output y in three stages:

1 Computes w(t) = f(u(t)) from the input data.

w(t) is an input to the linear transfer function B/F.

The input nonlinearity is a static (memoryless) function, where the
value of the output a given time t depends only on the input value at
time t.

You can configure the input nonlinearity as a sigmoid network,
wavelet network, saturation, dead zone, piecewise linear function,
one-dimensional polynomial, or a custom network. You can also
remove the input nonlinearity.

2 Computes the output of the linear block using w(t) and initial
conditions: x(t) = (B/F)w(t).

You can configure the linear block by specifying the numerator B
and denominator F orders.

3 Compute the model output by transforming the output of the linear
block x(t) using the nonlinear function h: y(t) = h(x(t)).

Similar to the input nonlinearity, the output nonlinearity is a static
function. Configure the output nonlinearity in the same way as the
input nonlinearity. You can also remove the output nonlinearity,
such that y(t) = x(t).

Resulting models are idnlhw objects that store all model data, including
model parameters and nonlinearity estimator. See the idnlhw reference
page for more information.

idnlhw States

This toolbox requires states for simulation and prediction using
sim(idnlhw), predict(idnlhw), and compare. States are also

2-221

idnlhw

necessary for linearization of nonlinear ARX models using
linearize(idnlhw). This toolbox provides a number of options to
facilitate how you specify the initial states. For example, you can use
findstates and data2state to automatically search for state values in
simulation and prediction applications. For linearization, use findop.
You can also specify the states manually.

The states of the Hammerstein-Wiener model correspond to the states
of the linear block in the Hammerstein-Wiener model structure:

The linear block contains all the dynamic elements of the model. If
this linear model is not a state-space structure, the states are defined
as those of model Mss, where Mss = idss(Model.LinearModel) and
Model is the idnlhw object.

Examples Create default Hammerstein-Wiener model structure:

m = idnlhw([2 2 1]) % na=nb=2 and nk=1
% m has piecewise linear input and output nonlinearity

Create nonlinear ARX model structure with sigmoid network
nonlinearity:

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

Create Hammerstein-Wiener model with specific input-output
nonlinearities:

m=idnlhw([2 2 1],'sigmoidnet','deadzone')
% Equivalent to m=idnlhw([2 2 1],'sig','dead')
% Nonlinearities have default configuration

2-222

idnlhw

Create Hammerstein-Wiener model and configure the nonlinearity
objects:

m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

Create a Hammerstein model (no output nonlinearity):

m=idnlhw([2 2 1],'saturation',[])
% [] specifies unitgain output nonlinearity

Configure the Hammerstein-Wiener model and estimate models
parameters:

m0 = idnlhw([nb,nf,nk],[sigmoidnet;pwlinear],[]);
m = pem(data,m0); % equivalent to m=nlhw(data,m0)

See Also customnet | linear | linearize(idnlhw) | nlhw | pem | poly1d |
saturation | sigmoidnet | wavenet | saturation

Tutorials • “Example – Using nlhw to Estimate Hammerstein-Wiener Models”

How To • “Identifying Hammerstein-Wiener Models”

2-223

idnlmodel

Purpose Superclass for nonlinear models

Description You do not use the idnlmodel class directly. Instead, idnlmodel
defines the common properties and methods inherited by its subclasses,
idnlarx, idnlgrey, and idnlhw.

idnlmodel
Properties

The following table lists the properties shared by the idnlarx,
idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.

Property Name Description

InputName Specifies the names of individual input channels.
Default: {'u1';'u2';...;'uNu'}.

Assignable values:

• For single-output models, a string. For example, 'torque'.

• For multiple-output models, an nu-by-1 cell array. For
example:
{'thrust'; 'aileron deflection'}

InputUnit Specifies the units of each input channel.
Default: ''.

Assignable values:

• For single-output models, a string. For example, 'm/s'.

• For multiple-output models, an nu-by-1 cell array.

Name Name of the model, specified as a string.

NoiseVariance Noise variance (covariance matrix) of the model innovations e.
Assignable value is an ny-by-ny matrix.
Typically set automatically by the estimation algorithm.

2-224

idnlmodel

Property Name Description

OutputName Specifies the names of individual output channels.
Default: {'y1';'y2';...;'yNy'}.

Assignable values:

• For single-output models, a string. For example, 'torque'.

• For multiple-output models, an ny-by-1 cell array. For
example:
{'thrust'; 'aileron deflection'}

OutputUnit Specifies the units of each output channel.
Default: ''.

Assignable values:

• For single-output models, a string. For example, 'm/s'.

• For multiple-output models, an ny-by-1 cell array.

TimeUnit Unit of the sampling interval and time vector, specified as a
string.
Default: ''.

TimeVariable Independent variable for the inputs, outputs, and—when
available—internal states, specified as a string.
Default: 't' (time).

Ts Sampling interval with the unit specified by TimeUnit.
Default: 1.

Assignable values:

• For discrete-time models, positive scalar value of the
sampling interval.

• For continuous-time models, 0.

2-225

idnlmodel

See Also

idnlarx

idnlgrey

idnlhw

2-226

idpoly

Purpose Linear polynomial input-output model

Syntax m = idpoly(A,B)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts,'Property1',Value1,...

'PropertyN',ValueN)
m = idpoly(mi)

Description idpoly creates a model object containing parameters that describe the
general multiple-input single-output model structure.

A, B, C, D, and F specify the polynomial coefficients.

For single-input systems, these are all row vectors.

A = [1 a1 a2 ... ana]

consequently describes

A, C, D, and F all start with 1, while B contains leading zeros to indicate
the delays. See “What Are Black-Box Polynomial Models?”.

For multiple-input systems, B and F are matrices with one row for
each input.

For time series, B and F are entered as empty matrices.

B = []; F = [];

NoiseVariance is the variance of the white noise sequence , while
Ts is the sampling interval.

2-227

idpoly

Trailing arguments C, D, F, NoiseVariance, and Ts can be omitted, in
which case they are taken as 1. (If B = [], then F is taken as [].) The
property name/property value pairs can start directly after B.

Ts = 0 means that the model is a continuous-time one. Then the
interpretation of the arguments is that

A = [1 2 3 4]

corresponds to the polynomial in the Laplace variable
s, and so on. For continuous-time systems, NoiseVariance indicates
the level of the spectral density of the innovations. A sampled version
of the model has the innovations variance NoiseVariance/Ts, where
Ts is the sampling interval. The continuous-time model must have a
white noise component in its disturbance description. See “Spectrum
Normalization”.

For discrete-time models (Ts > 0), note the following: idpoly strips
any trailing zeros from the polynomials when determining the orders. It
also strips leading zeros from the B polynomial to determine the delays.
Keep this in mind when you use idpoly and polydata to modify earlier
estimates to serve as initial conditions for estimating new structures.

idpoly can also take any single-output idmodel or LTI object mi as
an input argument. If an LTI system has an input group with name
'Noise', these inputs are interpreted as white noise with unit variance,
and the noise model of the idpoly model is computed accordingly.

Properties • na, nb, nc, nd, nf, nk: The orders and delays of the polynomials.
Integers or row vectors of integers.

• a, b, c, d, f: The polynomials, described by row vectors and matrices
as detailed above.

• da, db, dc, dd, df: The estimated standard deviation of the
polynomials. Cannot be set.

• 'InitialState': How to deal with the initial conditions that are
required to compute the prediction of the output. Possible values are:

2-228

idpoly

- 'Estimate': The necessary initial states are estimated from data
as extra parameters.

- 'Backcast': The necessary initial states are estimated by a
backcasting (backward filtering) process, described in Knudsen
(1994).

- 'Zero': All initial states are taken as zero.

- 'Auto': An automatic choice among the above is made, guided
by the data.

In addition, any idpoly object also has all the properties of idmodel.
See idmodel properties and Algorithm Properties.

Note that you can set or retrieve all properties either with the set and
get commands or by subscripts. Autofill applies to all properties and
values, and these are case insensitive.

m.a=[1 -1.5 0.7];
set(m,'ini','b')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

Examples To create a system of ARMAX, type

A = [1 -1.5 0.7];
B = [0 1 0.5];
C = [1 -1 0.2];
m0 = idpoly(A,B,C);

This gives a system with one delay (nk = 1).

Create the continuous-time model

2-229

idpoly

Sample it with T = 0.1 and then simulate it without noise.

B=[0 1;1 3];
F=[1 1 0;1 2 4]
m = idpoly(1,B,1,1,F,1,0)
md = c2d(m,0.1)
y = sim(md,[u1 u2])

Note that the continuous-time model is automatically sampled to the
sampling interval of the data, when simulated, so the above is also
achieved by

u = iddata([],[u1 u2],0.1)
y = sim(m,u)

idpoly
Definition
of States

The states of an idpoly model are defined as those corresponding to the
model obtained by converting them to the state-space format using the
idss command. For example, if you have an idpoly model defined by
m1 = idpoly([1 2 1],[2 2]), then the initial states of this model
correspond to those of m2 = idss(m1). The concept of states is useful
for functions such as sim, predict, compare and findstates.

References Ljung (1999) Section 4.2 for the model structure family.

Knudsen, T., (1994), “New method for estimating ARMAX models,” In
Proc. 10th IFAC Symposium on System Identification, pp. 611-617,
Copenhagen, Denmark, for the backcast method.

See Also idss

sim

“Extracting Parameter Values
from Linear Models”

2-230

idproc

Purpose Linear, low-order, continuous-time transfer function

Syntax m = idproc(Type)
m = idproc(Type,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(Data,Type) % to directly estimate an idproc model

Description The function idproc is used to create typical simple, continuous-time
process models as idproc objects. The model has one output, but can
have several inputs.

The character of the model is defined by the argument Type. This is an
acronym made up of the following symbols:

• P: All 'Type' acronyms start with this letter.

• 0, 1, 2, or 3: This integer denotes the number of time constants
(poles) to be modeled. Possible integrations (poles in the origin) are
not included in this number.

• I: The letter I is included to mark that an integration is enforced
(self-regulation process).

• D: The letter D is used to mark that the model contains a time delay
(dead time).

• Z: The letter Z is used to mark an extra numerator term: a zero.

• U: The letter U is included to mark that underdamped modes
(complex-valued poles) are permitted. If U is not included, all poles
are restricted to be real.

This means, for example, that Type = 'P1D' corresponds to the model
with transfer function

while Type = 'P0I' is

2-231

idproc

and Type = 'P3UZ' is

For multiple-input systems, Type is a cell array where each cell
describes the character of the model from the corresponding input, like
Type = {'P1D' 'P0I'} for the two-input model

(2-1)

The parameters of the model are

• Kp: The static gain

• Tp1, Tp2, Tp3: The real-time constants (corresponding to poles in
1/Tp1, etc.)

• Tw and Zeta: The “resonance time constant” and the damping factor
corresponding to a denominator factor (1+2 Zeta Tw s + (Tw s)^2).
If underdamped modes are allowed, Tw and Zeta replace Tp1 and Tp2.
A third real pole, Tp3, could still be included.

• Td: The time delay

• Tz: The numerator zero

These properties contain fields that give the values of the parameters,
upper and lower bounds, and information whether they are locked to
zero, have a fixed value, or are to be estimated. For multiple-input
models, the number of entries in these fields equals the number of
inputs. This is described in more detail below.

The idproc object is a child of idmodel. Therefore any idmodel
properties can be set as property name/property value pairs in the

2-232

idproc

idproc command. They can also be set by the command set, or by
subassignment, as in

m.InputName = {'speed','voltage'}
m.kp = 12

In the multiple-input case, models for specific inputs can be obtained
by regular subreferencing.

m(ku)

There are also two properties, DisturbanceModel and InitialState,
that can be used to expand the model. See below.

idproc
Properties

• Type: A string or a cell array of strings with as many elements as
there are inputs. The string is an acronym made up of the characters
P, Z, I, U, D and an integer between 0 and 3. The string must start
with P, followed by the integer, while possible other characters can
follow in any order. The integer is the number of poles (not counting
a possible integration), Z means the inclusion of a numerator zero, D
means inclusion of a time delay, while U marks that the modes can be
underdamped (a pair of complex conjugated poles). I means that an
integration in the model is enforced.

• Kp, Tp1, Tp2, Tp3, Tw, Zeta, Tz, Td: These are the parameters as
explained above. Each of these is a structure with the following fields:

- value: Numerical value of the parameter.

- max: Maximum allowed value of the parameter when it is
estimated.

- min: Minimum allowed value of the parameter when it is
estimated. For multiple-input models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero'.

'Zero' means that the parameter is locked to zero and not
included in the model. Assigning, for example, Type = 'P1'
means that the status of Tp2, Tp3, Tw, and Zeta will be 'Zero'.

2-233

idproc

The value 'Fixed' means that the parameter is fixed to its value,
and will not be estimated.

The value 'Estimate' means that the parameter value should
be estimated.

For multiple-input modes, status is a cell array with one element
for each input, while value, max, and min are row vectors.

• DisturbanceModel: Allows an additive disturbance model as in

(2-2)

where G(s) is a process model and e(t) is white noise, and C/D is a
first- or second-order transfer function.

DisturbanceModel can assume the following values:

- 'None': This is the default. No disturbance model is included
(that is, C=D=1).

- 'arma1': The disturbance model is a first-order ARMA model
(that is, C and D are first-order polynomials).

- 'arma2' or 'Estimate': The disturbance model is a second-order
ARMA model (that is, C and D are second-order polynomials).

When a disturbance model has been estimated, the property
DisturbanceModel is returned as a cell array, with the first entry
being the status as just defined, and the second entry being the
actual model, delivered as a continuous-time idpoly object.

• InitialState: Affects the parameterization of the initial values
of the states of the model. It assumes the same values as for other
models:

- 'Zero': The initial states are fixed to zero.

- 'Estimate': The initial states are treated as parameters to be
estimated.

2-234

idproc

- 'Backcast': The initial state vector is adjusted, during the
parameter estimation step, to a suitable value, but it is not stored.

- 'Auto': Makes a data-dependent choice among the values above.

• InputLevel: The offset level of the input signal(s). This is of
particular importance for those input channels that contain an
integration. InputLevel will then define the level from which the
integration takes place, and that cannot be handled by estimating
initial states. InputLevel has the same structure as the model
parameters Kp, etc., and thus contains the following fields:

- value: Numerical value of the parameter. For multiple-input
models, this is a row vector.

- max: Maximum allowed value of the parameter when it is
estimated.

- min: Minimum allowed value of the parameter when it is
estimated. For multiple-input models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero' with
the same interpretations.

In addition, any idproc object also has all the properties of idmodel.
See Algorithm Properties, EstimationInfo, and idmodel.

Note that all properties can be set or retrieved using either the set
and get commands or subscripts. Autofill applies to all properties and
values, and these are case insensitive. Also 'u' and 'y' are short for
'Input' and 'Output', respectively. You can also set all properties at
estimation time as property name/property value pairs in the call to pem.
An extended syntax allows direct setting of the fields of the parameter
values, so that assigning a numerical value is automatically attributed
to the value field, while a string is attributed to the status field.

m.kp = 10 % Alternative for m.Kp.value = 10
m.Tp1 = 'estimate' % Alternative for

% m.Tp1.status = {'estimate'}
% Initializing the parameter Kp at the value 10
m = pem(Data,'P1D','kp',10)

2-235

idproc

% Fixing the parameter Kp to the value 10
m = pem(Data,'P1D','kp',10,'kp','fix')
% constraining Kp to lie between 3 and 4
m = pem(Data,'P2U','kp',{'max',4},'kp',{'min',3})
% For two inputs, estimate the offset level
% of the first input
m = pem(Data,{'P2I','P1D'},'ulevel',{'est','zer'})
% estimate a noise model
m = pem(Data,'P2U','dist','est')
% Use a fixed noisemodel,
% given by the continuous-time idpoly model noimod
m = pem(Data,'P2U','dist',{'fix',noimod})
% (minimum Kp for the second input)
m.kp.min(2) = 12
% fixing the gain for the second input.
m.kp.status{2} = 'fix'

For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

idproc
Definition
of States

The states of an idproc model are defined as those corresponding to the
model obtained by converting them to the state-space format using the
idss command. For example, if you have an idproc model defined by
m1 = idproc('P1D');, then the initial states of this model correspond
to those of m2 = idss(m1). The concept of states is useful for functions
such as sim, predict, compare and findstates.

Examples In this example, you estimate a process model with two real poles and
dead time, including an ARMA1 model to capture disturbance dynamics:

m = pem(Data,'P2D','dist','arma1')

2-236

idresamp

Purpose Resample time-domain data by decimation or interpolation

Syntax datar = idresamp(data,R)
datar = idresamp(data,R,order,tol)
[datar,res_fact] = idresamp(data,R,order,tol)

Description datar = idresamp(data,R) resamples data on a new sample interval
R and stores the resampled data as datar.

datar = idresamp(data,R,order,tol) filters the data by applying a
filter of specified order before interpolation and decimation. Replaces R
by a rational approximation that is accurate to a tolerance tol.

[datar,res_fact] = idresamp(data,R,order,tol) returns
res_fact, which corresponds to the value of R approximated by a
rational expression.

Input data
Name of time-domain iddata object or a matrix of data. Can be
input-output or time-series data.

Data must be sampled at equal time intervals.

R
Resampling factor, such that R>1 results in decimation and R<1
results in interpolation.

Any positive number you specify is replaced by the rational
approximation, Q/P.

order
Order of the filters applied before interpolation and decimation.

Default: 8

tol
Tolerance of the rational approximation for the resampling factor
R.

2-237

idresamp

Smaller tolerance might result in larger P and Q values, which
produces more accurate answers at the expense of slower
computation.

Default: 0.1

Output datar
Name of the resampled data variable. datar class matches the
data class, as specified.

res_fact
Rational approximation for the specified resampling factor R and
tolerance tol.

Any positive number you specify is replaced by the rational
approximation, Q/P, where the data is interpolated by a factor P
and then decimated by a factor Q.

See Also resample

2-238

idss

Purpose State-space model

Syntax m = idss(A,B,C,D)
m = idss(A,B,C,D,K,x0,Ts,'Property1',Value1,...

'PropertyN',ValueN)
mss = idss(m1)

Description The function idss is used to construct state-space model structures
with various parameterizations. It is a complement to idgrey and deals
with parameterizations that do not require the user to write a special
M-file. Instead it covers parameterizations that are either 'Free',
that is, all parameters in the A, B, and C matrices can be adjusted
freely, or 'Canonical', meaning that the matrices are parameterized
as canonical forms. The parameterization can also be 'Structured',
which means that certain elements in the state-space matrices are free
to be adjusted, while others are fixed. This is explained below.

Ts is the sampling interval. Ts = 0 means a continuous-time model.
The default is Ts = 1.

The idss object m describes state-space models in innovations form of
the following kind:

Here is the time derivative for a continuous-time model and
for a discrete-time model.

The model m will contain information both about the nominal/initial
values of the A, B, C, D, K, and X0 matrices and about how these
matrices are parameterized by the parameter vector (to be estimated).

The nominal model is defined by idss(A,B,C,D,K,X0). If K and X0 are
omitted, they are taken as zero matrices of appropriate dimensions.

2-239

idss

Defining an idss object from a given model,

mss = idss(m1)

constructs an idss model from any idmodel or LTI system m1.

If m1 is an LTI system (ss, tf, or zpk) that has no InputGroup called
'Noise', the corresponding state-space matrices A, B, C, D are used to
define the idss object. The Kalman gain K is then set to zero.

If the LTI system has an InputGroup called 'Noise', these inputs are
interpreted as white noise with a covariance matrix equal to the identity
matrix. The corresponding Kalman gain and noise variance are then
computed and entered into the idss model together with A, B, C, and D.

Parameterizations

There are several different ways to define the parameterization of
the state-space matrices. The parameterization determines which
parameters can be adjusted to data by the parameter estimation routine
pem.

• Free black-box parameterizations: This is the default situation
and corresponds to letting all parameters in A, B, and C
be freely adjustable. You do this by setting the property
'SSParameterization' = 'Free'. The parameterizations of D, K,
and X0 are then determined by the following properties:

- 'nk': A row vector of the same length as the number of inputs.
The kuth element is the delay from input channel number ku.
Thus nk = [0,...,0] means that there is no delay from any of
the inputs, and that consequently all elements of the D matrix
should be estimated. nk =[1,...,1] means that there is a delay
of 1 from each input, so that the D matrix is fixed to be zero.

- 'DisturbanceModel': This property affects the parameterization
of K and can assume the following values:

'Estimate': All elements of the K matrix are to be estimated.

'None': All elements of K are fixed to zero.

2-240

idss

'Fixed': All elements of K are fixed to their nominal/initial values.

- 'InitialState': Affects the parameterization of X0 and can
assume the following values:

'Auto': An automatic choice of the following is made, depending
on data (default).

'Estimate': All elements of X0 are to be estimated.

'Zero': All elements of X0 are fixed to zero.

'Fixed': All elements of X0 are fixed to their nominal/initial
values.

'Backcast': The vector X0 is adjusted, during the parameter
estimation step, to a suitable value, but it is not stored as an
estimation result.

• Canonical black-box parameterizations: You do this by setting the
property 'SSParameterization' = 'Canonical'. The matrices A,
B, and C are then parameterized as an observer canonical form,
which means that ny (number of output channels) rows of A are
fully parameterized while the others contain 0’s and 1’s in a certain
pattern. The C matrix is built up of 0’s and 1’s while the B matrix
is fully parameterized. See Equation (A.16) in Ljung (1999) for
details. The exact form of the parameterization is affected by the
property 'CanonicalIndices'. The default value 'Auto' is a good
choice. The parameterization of the D, K, and X0 matrices in this
case is determined by the properties 'nk', 'DisturbanceModel',
and 'InitialState’.

• Arbitrarily structured parameterizations: The general case,
where arbitrary elements of the state-space matrices are fixed
and others can be freely adjusted, corresponds to the case
'SSParameterization' = 'Structured'. The parameterization is
determined by the idss properties As, Bs, Cs, Ds, Ks, and X0s. These
are the structure matrices that are “shadows” of the state-space
matrices, so that an element in these matrices that is equal to NaN
indicates a freely adjustable parameter, while a numerical value

2-241

idss

in these matrices indicates that the corresponding system matrix
element is fixed (nonadjustable) to this value.

idss
Properties

• SSParameterization has the following possible values:

- 'Free': Means that all parameters in A, B, and C are freely
adjustable, and the parameterizations of D, K, and X0 depend on
the properties 'nk', 'DisturbanceModel', and 'InitialState'.

- 'Canonical': Means that A and C are parameterized as an
observer canonical form. The details of this parameterization
depend on the property 'CanonicalIndices'. The B matrix is
always fully parameterized, and the parameterizations of D, K,
and X0 depend on the properties 'nk', 'DisturbanceModel', and
'InitialState'.

- 'Structured': Means that the parameterization is determined by
the properties (the structure matrices) 'As', 'Bs', 'Cs', 'Ds',
'Ks', and 'X0s'. A NaN in any position in these matrices denotes a
freely adjustable parameter, and a numeric value denotes a fixed
and nonadjustable parameter.

• nk: A row vector with as many entries as the number of input
channels. The entry number k denotes the time delay from input
number k to y(t). This property is relevant only for 'Free' and
'Canonical' parameterizations. If any delay is larger than 1, the
structure of the A, B, and C matrices will accommodate this delay, at
the price of a higher-order model.

• DisturbanceModel has the following possible values:

- 'Estimate': Means that the K matrix is fully parameterized.

- 'None': Means that the K matrix is fixed to zero. This gives a
so-called output-error model, since the model output depends on
past inputs only.

- 'Fixed': Means that the K matrix is fixed to the current nominal
values.

• InitialState has the following possible values:

2-242

idss

- 'Estimate': Means that X0 is fully parameterized.

- 'Zero': Means that X0 is fixed to zero.

- 'Fixed': Means that X0 is fixed to the current nominal value.

- 'Backcast': The value of X0 is estimated by the identification
routines as the best fit to data, but it is not stored.

- 'Auto': Gives an automatic and data-dependent choice among
'Estimate', 'Zero', and 'Backcast'.

• A, B, C, D, K, and X0: The state-space matrices that can be set
and retrieved at any time. These contain both fixed values and
estimated/nominal values.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations
of the state-space matrices. These cannot be set, only retrieved.
Note that these are not defined for an idss model with 'Free'
SSParameterization. You can then convert the parameterization to
'Canonical' and study the uncertainties of the matrix elements in
that form.

• As, Bs, Cs, Ds, Ks, and X0s: These are the structure matrices that
have the same sizes as A, B, C, etc., and show the freely adjustable
parameters as NaNs in the corresponding position. These properties
are used to define the model structure for 'SSParameterization'
= 'Structured'. They are always defined, however, and can be
studied also for the other parameterizations.

• CanonicalIndices: Determines the details of the canonical
parameterization. It is a row vector of integers with as many
entries as there are outputs. They sum up to the system order.
This is the so-called pseudocanonical multiindex with an exact
definition, for example, on page 132 in Ljung (1999). A good
default choice is 'Auto'. This property is relevant only for the
canonical parameterization case. Note however, that for 'Free'
parameterizations, the estimation algorithms also store a canonically
parameterized model to handle the model uncertainty.

2-243

idss

In addition to these properties, idss objects also have all the properties
of the idmodel object. See idmodel properties, Algorithm Properties,
and EstimationInfo.

Note that all properties can be set and retrieved either by the set and
get commands or by subscripts. Autofill applies to all properties and
values, and these are case insensitive.

m.ss='can'
set(m,'ini','z')
p = eig(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

Examples Define a continuous-time model structure corresponding to

with initial values

and estimate the free parameters.

A = [-0.2, 0; 0, -0.3]; B = [2;4]; C=[1, 1]; D = 0
m0 = idss(A,B,C,D);
m0.As = [NaN,0;0,NaN];
m0.Bs = [NaN;NaN];
m0.Cs = [1,1];

2-244

idss

m0.Ts = 0;
m = pem(z,m0);

Estimate a model in free parameterization. Convert it to continuous
time, then convert it to canonical form and continue to fit this model
to data.

m1 = n4sid(data,3);
m1 = d2c(m1);
m1.ss ='can';
m = pem(data,m1);

All of this can be done at once by

m = pem(data,3,'ss','can','ts',0)

See Also n4sid

pem

setstruc

2-245

ifft

Purpose Transform iddata objects from frequency to time domain

Syntax dat = ifft(Datf)

Description ifft transforms a frequency-domain iddata object to the time domain.
It requires the frequencies on Datf to be equally spaced from frequency
0 to the Nyquist frequency. This means that if there are N frequencies
in Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where F is pi/Ts if N is odd and
F = pi/Ts*(1-1/N) if N is even.

See Also iddata

fft

2-246

impulse

Purpose Plot impulse response with confidence interval

Syntax impulse(m)
impulse(data)
impulse(m,'sd',sd,Time)
impulse(m,'sd',sd,Time,'fill')
impulse(data,'sd',sd,'pw',na,Time)
impulse(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
impulse(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,
mN,'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = impulse(m)
mod = impulse(data)

Description impulse can be applied both to idmodels and to iddata sets, as well as
to any mixture.

For a discrete-time idmodel m, the impulse response y and, when
required, its estimated standard deviation ysd, are computed using sim.
When called with output arguments, y, ysd, and the time vector t are
returned. When impulse is called without output arguments, a plot of
the impulse response is shown. If sd is given a value larger than zero, a
confidence region around zero is drawn. It corresponds to the confidence
of sd standard deviations. In the plots, the impulse is inversely scaled
with the sampling interval so that it has the same energy regardless
of the sampling interval.

Adding an argument 'fill' among the input arguments gives an
uncertainty region marked by a filled area rather than by dash-dotted
lines.

Setting the Time Interval

You can specify the start time T1 and the end time T2 using Time= [T1
T2]. If T1 is not given, it is set to -T2/4. The negative time lags (the
impulse is always assumed to occur at time 0) show possible feedback
effects in the data when the impulse is estimated directly from data. If
Time is not specified, a default value is used.

2-247

impulse

Estimating the Impulse Response from Data

For an iddata object, impulse(data) estimates a high-order, noncausal
FIR model after first having prefiltered the data so that the input is
“as white as possible.” The impulse response of this FIR model and,
when asked for, its confidence region, are then plotted. Note that it is
not always possible to deliver the demanded time interval when the
response is estimated. A warning is then issued. When called with an
output argument, impulse, in the iddata case, returns this FIR model,
stored as an idarx model. The order of the prewhitening filter can
be specified by the property name/property value pair 'pw'/na. The
default value is na = 10.

Several Models/Data Sets

Any number and any mixture of models and data sets can be used as
input arguments. The responses are plotted with each input/output
channel (as defined by the model and data set InputName and
OutputName properties) as a separate plot. Colors, line styles, and
marks can be defined by PlotStyle values. These are the same as for
the regular plot command, as in

impulse(m1,'b-*',m2,'y--',m3,'g')

Noise Channels

The noise input channels in m are treated as follows:

Consider a model m with both measured input channels u (nu channels)
and noise channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance = .
The model can also be described with unit variance, using a normalized
noise source v:

2-248

impulse

• impulse(m) plots the impulse response of the transfer function G.

• impulse(m('n')) plots the impulse response of the transfer function
H (ny inputs and ny outputs). The input channels have names
e@yname, where yname is the name of the corresponding output.

• If m is a time series, that is nu = 0,impulse(m), plots the impulse
response of the transfer function H.

• impulse(noisecnv(m)) plots the impulse response of the transfer
function [G H] (nu+ny inputs and ny outputs). The noise input
channels have names e@yname, where yname is the name of the
corresponding output.

• impulse(noisecnv(m,'norm')) plots the impulse response of the
transfer function [G HL] (nu+ny inputs and ny outputs). The noise
input channels have names v@yname, where yname is the name of
the corresponding output.

Arguments If impulse is called with a single idmodel m, the output argument y is a
3-D array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time
vector t, ny is the number of output channels, and nu is the number of
input channels. Thus y(:,ky,ku) is the response in output ky to an
impulse in the kuth input channel.

ysd has the same dimensions as y and contains the standard deviations
of y.

If impulse is called with an output argument and a single data set in
the input arguments, the output is returned as an idarx model mod
containing the high-order FIR model and its uncertainty. By calling
impulse with mod, the responses can be displayed and returned without
your having to redo the estimation.

Examples Suppose that you have a two-input and three-output data set. To
estimate and plot the impulse response for all I/O pairs, including

2-249

impulse

the confidence region corresponding to 3 standard deviations, use the
following command:

impulse(data,'sd',3) % Response from input 3 to output 2

To take a closer look at the subsystems, do the following:

mod = impulse(data)
impulse(mod(2,3),'sd',3)

See Also cra

step

2-250

init

Purpose Set or randomize initial parameter values

Syntax m = init(m0)
m = init(m0,R,pars,sp)

Description This function randomizes initial parameter estimates for model
structures m0 for any idmodel, idnlarx, and idnlhw model object. It
does not support idnlgrey models. m is the same model structure as m0,
but with a different nominal parameter vector. This vector is used as
the initial estimate by pem.

The parameters are randomized around pars with variances given by
the row vector R. Parameter number k is randomized as pars(k) +
e*sqrt(R(k)), where e is a normal random variable with zero mean
and a variance of 1. The default value of R is all ones, and the default
value of pars is the nominal parameter vector in m0.

Only models that give stable predictors are accepted. If sp = 'b', only
models that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires
stability only of the predictor. sp = 'p' is the default.

Sufficiently free parameterizations can be stabilized by direct means
without any random search. To just stabilize such an initial model, set
R = 0. With R > 0, randomization is also done.

For model structures where a random search is necessary to find a
stable model/predictor, a maximum of 100 trials is made by init. It
can be difficult to find a stable predictor for high-order systems by
trial and error.

See Also idnlarx

idnlhw

idmodel

pem

2-251

isreal

Purpose Determine whether model parameters or data values are real

Syntax isreal(Data)
isreal(Model)

Description Data is an iddata set and Model is any idmodel. The isreal function
returns 1 if all parameters of the model are real and if all signals of
the data set are real.

See Also realdata

2-252

ivar

Purpose Estimate AR model using instrumental variable method

Syntax m = ivar(y,na)
m = ivar(y,na,nc,maxsize)

Description Estimate AR model using the instrumental variable method and
returning idpoly object. The parameters of an AR model structure

are estimated using the instrumental variable method. y is the signal
to be modeled, entered as an iddata object (outputs only). na is the
order of the A polynomial (the number of A parameters). The resulting
estimate is returned as an idpoly model m. The routine is for scalar
time-domain signals only.

In the above model, is an arbitrary process, assumed to be a moving
average process of order nc, possibly time varying. (Default is nc =
na.) Instruments are chosen as appropriately filtered outputs, delayed
nc steps.

The optional argument maxsize is explained under Algorithm
Properties.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and
by the forward-backward least squares method.

y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) + ...
0.2*randn(500,1),[]);

miv = ivar(y,4);
mls = ar(y,4);
bode(miv,mls)

References Stoica, P., et al., Optimal Instrumental variable estimates of the
AR-parameters of an ARMA process, IEEE Trans. Autom. Control,
Vol. AC-30, 1985, pp. 1066-1074.

2-253

ivar

See Also Algorithm Properties

EstimationInfo

ar

arx

etfe

idpoly

pem

spa

step

2-254

ivstruc

Purpose Loss functions for sets of ARX model structures

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX
type. Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

ze and zv are iddata objects containing output-input data. Only
time-domain data is supported. Models for each model structure defined
in NN are estimated using the instrumental variable (IV) method on
data set ze. The estimated models are simulated using the inputs
from data set zv. The normalized quadratic fit between the simulated
output and the measured output in zv is formed and returned in v. The
rows below the first row in v are the transpose of NN, and the last row
contains the logarithms of the condition numbers of the IV matrix

A large condition number indicates that the structure is of unnecessarily
high order (see Ljung, L. System Identification: Theory for the User,
Upper Saddle River, NJ, Prentice-Hal PTR, 1999, p. 498).

The information in v is best analyzed using selstruc.

If p is equal to zero, the computation of condition numbers is suppressed.
For the use of maxsize, see Algorithm Properties.

The routine is for single-output systems only.

Note The IV method used does not guarantee that the models obtained
are stable. The output-error fit calculated in v can then be misleading.

2-255

ivstruc

Examples Compare the effect of different orders and delays, using the same data
set for both the estimation and validation.

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z,nn);

Algorithm A maximum-order ARX model is computed using the least squares
method. Instruments are generated by filtering the input(s) through
this model. The models are subsequently obtained by operating on
submatrices in the corresponding large IV matrix.

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999.

See Also arxstruc

iv4

selstruc

struc

2-256

ivx

Purpose Estimate parameters of ARX model using instrumental variable method
with arbitrary instruments

Syntax m = ivx(data,orders,x)
m = ivx(data,orders,x,maxsize)

Description Estimate parameters of ARX model using instrumental variable method
with arbitrary instruments and returning idpoly or idarx objects.
ivx is a routine analogous to the iv4 routine, except that you can use
arbitrary instruments. These are contained in the matrix x. Make this
the same size as the output, data.y. In particular, if data contains
several experiments, x must be a cell array with one matrix/vector for
each experiment. The instruments used are then analogous to the
regression vector itself, except that y is replaced by x.

Note that ivx does not return any estimated covariance matrix for
m, since that requires additional information. m is returned as an
idpoly object for single-output systems and as an idarx object for
multiple-output systems.

Use iv4 as the basic IV routine for ARX model structures. The main
interest in ivx lies in its use for nonstandard situations, for example,
when there is feedback present in the data, or when other instruments
need to be tried out. Note that there is also an IV version that
automatically generates instruments from certain filters you define
(type help iv).

References Ljung (1999), page 222.

See Also Algorithm Properties

EstimationInfo

arx

idarx

idpoly

2-257

ivx

iv4

pem

2-258

iv4

Purpose Estimate ARX model using four-stage instrumental variable method

Syntax m = iv4(data,orders)
m = iv4(data,'na',na,'nb',nb,'nk',nk)
m= iv4(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description Returns idpoly or idarx object. This function is an alternative to arx
and the use of the arguments is entirely analogous to the arx function.
The main difference is that the procedure is not sensitive to the color
of the noise term in the model equation.

Examples Here is an example of a two-input, one-output system with different
delays on the inputs and .

z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);

Algorithm The first stage uses the arx function. The resulting model generates
the instruments for a second-stage IV estimate. The residuals obtained
from this model are modeled as a high-order AR model. At the fourth
stage, the input-output data is filtered through this AR model and
then subjected to the IV function with the same instrument filters as
in the second stage.

For the multiple-output case, optimal instruments are obtained only if
the noise sources at the different outputs have the same color. The
estimates obtained with the routine are reasonably accurate, however,
even in other cases.

References Ljung (1999), equations (15.21) through (15.26).

See Also Algorithm Properties

EstimationInfo

2-259

iv4

arx

idarx

idpoly

ivx

pem

2-260

linapp

Purpose Linear approximation of nonlinear ARX and Hammerstein-Wiener
models for given input

Syntax lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)

Input nlmodel
Name of the idnlarx or idnlhwmodel object you want to linearize.

u
Input signal as an iddata object or a real matrix.

Dimensions of u must match the number of inputs in nlmodel.

[umin,umax]
Minimum and maximum input values for generating white-noise
input with a magnitude in this rectangular range. The sample
length of this signal is nsample.

nsample
Optional argument when you specify [umin,umax]. Specifies the
length of the white-noise input. Default: 1024.

Description lm = linapp(nlmodel,u) computes a linear approximation of a
nonlinear ARX or Hammerstein-Wiener model by simulating the model
output for the input signal u, and estimating a linear model lm from u
and the simulated output signal.

lm = linapp(nlmodel,umin,umax,nsample) computes a linear
approximation of a nonlinear ARX or Hammerstein-Wiener model by
first generating the input signal as a uniformly distributed white noise
from the magnitude range umin and umax and (optionally) the number
of samples.

The following table summarizes the linear model objects that store the
linear approximation for each type of nonlinear model and the number
of outputs.

2-261

linapp

Nonlinear Model
Type

Number of Outputs Linear Model
Object

idnlarx Single output idpoly

idnlarx Multiple outputs idarx

idnlhw Single output idpoly

idnlhw Multiple outputs idss

See Also idnlarx | idnlhw | findop(idnlarx) | findop(idnlhw) |
linearize(idnlarx) | linearize(idnlhw)

How To • “Linear Approximation of Nonlinear Black-Box Models”

2-262

linear

Purpose Specify to estimate nonlinear ARX model that is linear in (nonlinear)
custom regressors

Syntax lin=linear
lin=linear('Parameters',Par)

Description linear is an object that specifies that the nonlinear ARX model is
linear in custom (nonlinear) regressors. You define custom regressors
using customreg.

lin=linear instantantiates the linear object.

lin=linear('Parameters',Par) instantantiates the linear object and
specifies optional values in the Par structure. For more information
about this structure, see “linear Properties” on page 2-263.

Remarks linear is a linear (affine) function y F x= () , defined as follows:

F x xL d() = +

y is scalar, and x is a 1-by-m vector.

Use evaluate(lin,x) to compute the value of the function defined by
the linear object lin at x.

linear
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List Parameters values
get(lin)
% Get value of Parameters property
lin.Parameters

2-263

linear

Property Name Description

Parameters Structure containing the following fields:

• LinearCoef: m-by-1 vector L.

• OutputOffset: Scalar d.

Examples To specify that the nonlinear ARX model is linear in custom regressors,
first specify one or more customreg objects. Then, include the linear
object in the nlarx estimator command.

For example, to estimate a nonlinear ARX model linear in the custom
regressors, use the following syntax:

m=nlarx(Data,Orders,linear,'custom',{'y(t-1)*u(t-2)'});

Note In this example, the custom regressor is a nonlinear function of
input and output variables.

Algorithm When the idnlarx property Focus is 'Prediction', linear uses a
fast, noniterative initialization and iterative search technique for
estimating parameters. In most cases, iterative search requires only a
few iterations.

When the idnlarx property Focus='Simulation', linear uses an
iterative technique for estimating parameters.

See Also customreg

nlarx

2-264

linearize(idnlarx)

Purpose Linearize nonlinear ARX model

Syntax SYS = linearize(NLSYS,U0,X0)

Description SYS = linearize(NLSYS,U0,X0) linearizes a nonlinear ARX model
about the specified operating point U0 and X0. The linearization is based
on tangent linearization. For more information about the definition of
states for idnlarx models, see “Definition of idnlarx States” on page
2-189.

Input • NLSYS: idnlarx model.

• U0: Matrix containing the constant input values for the model.

• X0: Model state values. The states of a nonlinear ARX model are
defined by the time-delayed samples of input and output variables.
For more information about the states of nonlinear ARX models, see
the getDelayInfo reference page.

Note To estimate U0 and X0 from operating point specifications, use
the findop(idnlarx) command.

Output • SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an
LTI object.

Algorithm The following equations govern the dynamics of an idnlarx model:

X t AX t Bu t
y t f X u

() () ()
() (,)

+ = +
=

1 �

where X(t) is a state vector, u(t) is the input, and y(t) is the output. A

and B are constant matrices. �u t() is [y(t), u(t)]T.

The output at the operating point is given by

2-265

linearize(idnlarx)

y* = f(X*, u*)

where X* and u* are the state vector and input at the operating point.

The linear approximation of the model response is as follows:

Δ Δ Δ
Δ Δ Δ

X t A B f X t B f B u t

y t f X t f u t
X u

X u

() () () () ()
() () ()

+ = + + +
= +

1 1 1 2

where

• ΔX t X t X t() () ()*= −

• Δu t u t u t() () ()*= −

• Δy t y t y t() () ()*= −

• BU B B
Y
U

B Y B U� =
⎡

⎣
⎢

⎤

⎦
⎥ = +[,]1 2 1 2

• f
X

f X UX
X U

= ∂
∂

(,)
*, *

• f
U

f X UU
X U

= ∂
∂

(,)
*, *

Note For linear approximations over larger input ranges, use linapp.
For more information, see the linapp reference page.

Example Linearize a nonlinear ARX model around an operating point
corresponding to a simulation snapshot at a specific time. Create an
idnlarx model estimated using sample data.

1 Load sample data:

2-266

linearize(idnlarx)

load iddata2

2 Estimate idnlarx model from sample data:

nlsys = nlarx(z2,[4 3 10],'tree','custom',...
{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

3 Plot the response of the model for a step input:

step(nlsys, 20)

The model step response is a steady-state value of 0.8383 at T =
20 seconds.

4 Compute the operating point corresponding to T = 20.

stepinput = iddata([],[zeros(10,1);ones(200,1)],...
nlsys.Ts);

% Compute operating point.
[x,u] = findop(nlsys,'snapshot',20,stepinput);

2-267

linearize(idnlarx)

5 Linearize the model about the operating point corresponding to the
model snapshot at T=20.

sys = linearize(nlsys,u,x)

6 To validate the linear model, apply a small perturbation delta_u to
the steady-state input of the nonlinear model nlsys. If the linear
approximation is accurate, the following should match:

• The response of the nonlinear model y_nl to an input that is the
sum of the equilibrium level and the perturbation delta_u.

• The sum of the response of the linear model to a perturbation
input delta_u and the output equilibrium level.

% Generate a 200-sample step signal with amplitude 0.1
% This is the perturbation signal.
delta_u = [zeros(10,1); 0.1*ones(190,1)];
%
% For a nonlinear system with a steady-state input of 1
% and a steady-state output of 0.8383,
% compute the steady-state response
% y_nl to the perturbed input u_nl. Use equilibrium state
% values x as initial conditions (see Step 4).
u_nl = 1 + delta_u;
y_nl = sim(nlsys,u_nl,x);
%
% Compute response of linear model to perturbation input
% and add it to the output equilibrium level:
y_lin = 0.8383 + lsim(sys,delta_u);
%
% Compare the response of nonlinear and linear models:
time = [0:0.1:19.9]';
plot(time,y_nl,time,y_lin)
legend('Nonlinear response',...

'Linear response about op. pt.')

2-268

linearize(idnlarx)

title(['Nonlinear and linear model response'...
' for small step input'])

The linearized model response tracks the nonlinear model output.

See Also findop(idnlarx) | getDelayInfo | idnlarx | linapp

How To • “Linear Approximation of Nonlinear Black-Box Models”

2-269

linearize(idnlhw)

Purpose Linearize Hammerstein-Wiener model

Syntax SYS = linearize(NLSYS,U0)
SYS = linearize(NLSYS,U0,X0)

Description SYS = linearize(NLSYS,U0) linearizes a Hammerstein-Wiener
model around the equilibrium operating point. When using this
syntax, equilibrium state values for the linearization are calculated
automatically using U0.

SYS = linearize(NLSYS,U0,X0) linearizes the idnlhw model NLSYS
around the operating point specified by the input U0 and state values
X0. In this usage, X0 need not contain equilibrium state values. For
more information about the definition of states for idnlhw models, see
“idnlhw States” on page 2-221.

The output is a linear model that is the best linear approximation for
inputs that vary in a small neighborhood of a constant input u(t) = U.
The linearization is based on tangent linearization.

Input • NLSYS: idnlhw model.

• U0: Matrix containing the constant input values for the model.

• X0: Operating point state values for the model.

Note To estimate U0 and X0 from operating point specifications, use
the findop(idnlhw) command.

Output • SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an
LTI object.

Algorithm The idnlhw model structure represents a nonlinear system using a
linear system connected in series with one or two static nonlinear

2-270

linearize(idnlhw)

systems. For example, you can use a static nonlinearity to simulate
saturation or dead-zone behavior. The following figure shows the
nonlinear system as a linear system that is modified by static input
and output nonlinearities, where function f represents the input
nonlinearity, g represents the output nonlinearity, and [A,B,C,D]
represents a state-space parameterization of the linear model.

The following equations govern the dynamics of an idnlhw model:

v(t) = f(u(t))

X(t+1) = AX(t)+Bv(t)

w(t) = CX(t)+Dv(t)

y(t) = g(w(t))

where

• u is the input signal

• v and w are intermediate signals (outputs of the input nonlinearity
and linear model respectively)

• y is the model output

The linear approximation of the Hammerstein-Weiner model around an
operating point (X*, u*) is as follows:

Δ Δ Δ
Δ Δ Δ

X t A X t Bf u t

y t g C X t g Df u t
u

w w u

() () ()
() () ()

+ = +
≈ +

1

where

• ΔX t X t X t() () ()*= −

• Δu t u t u t() () ()*= −

2-271

linearize(idnlhw)

• Δy t y t y t() () ()*= −

• f
u

f uu
u u

= ∂
∂ =

()
*

• g
w

g ww
w w

= ∂
∂ =

()
*

where y* is the output of the model corresponding to input u* and
state vector X*, v* = f(u*), and w* is the response of the linear model
for input v* and state X*.

Note For linear approximations over larger input ranges, use linapp.
For more information, see the linapp reference page.

Examples Linearize a Hammerstein-Wiener model with two inputs at an
equilibrium point, and compare the linearized model response to the
original model response.

1 Load the sample data to create iddata object z.

load iddata2
load iddata3
z2.Ts = z3.Ts;
z = [z2(1:300),z3]; % Estimation data

2 Estimate an idnlhw model using a combination of pwlinear, poly1d,
sigmoidnet and customnet nonlinearities.

orders = [2 2 3 4 1 5; 2 5 1 2 5 2];
nlsys = nlhw(z,orders,[pwlinear;poly1d],...

[sigmoidnet;customnet(@gaussunit)]);

3 Linearize the model at an equilibrium operating point corresponding
to input levels of 10 and 5 respectively. To do this you first compute

2-272

linearize(idnlhw)

the operating point using findop, then linearize the model around
the computed input and state values.

[x,u_s,report] = findop(nlsys,'steady',[10,5]);
sys = linearize(nlsys,u_s,x);
% sys is a state-space model

4 To validate the linear model, apply a small perturbation delta_u to
the steady-state input of the nonlinear model nlsys. If the linear
approximation is accurate, the following should match:

• The response of the nonlinear model y_nl to an input that is the
sum of the equilibrium level and the perturbation delta_u.

• The sum of the response of the linear model to a perturbation
input delta_u and the output equilibrium level.

% Generate a 300-sample step signal with amplitude 0.1
% This is the perturbation input signal.
delta_u = [zeros(20,2); 0.1*ones(280,2)];
%
% Compute the response of the linear model delta_y_lin
% to the perturbed input signal delta_u:
delta_y_lin = lsim(sys,delta_u);
%
% For the nonlinear system with a steady-state input u_s,
% compute the steady-state output y_s from the
% SignalLevels field of the findop report (see Step 3):
y_s = report.SignalLevels.Output;
%
% Compute the perturbed input to the nonlinear system
% as the sum of the steady-state input u_s and
% the perturbation signal delta_u:
u_nl = bsxfun(@plus,delta_u,u_s);

% Compute the steady-state response of the
% nonlinear system y_nl to the perturbed input u_nl.
% Use equilibrium state values x as initial conditions.

2-273

linearize(idnlhw)

y_nl = sim(nlsys,u_nl,x);
%
% Compare the response of nonlinear and linear models:
time = (0:299)';
subplot(211)
plot(time,y_nl(:,1),time,delta_y_lin(:,1)+y_s(1),'.')
legend('Nonlinear response',...

'Linear response about op. pt.')
title('Comparison of signal values for output 1')

subplot(212)
plot(time,y_nl(:,2),time,delta_y_lin(:,2)+y_s(2),'.')
legend('Nonlinear response',...

'Linear response about op. pt.')
title('Comparison of signal values for output 2')

2-274

linearize(idnlhw)

See Also findop(idnlhw) | idnlhw | linapp

How To • “Linear Approximation of Nonlinear Black-Box Models”

2-275

LTI Commands

Purpose Apply Control System Toolbox commands to linear model

Syntax append, augstate, balreal, canon, d2d, feedback, inv, minreal,
modred, norm, parallel, series, ss2ss

Description When you have the Control System Toolbox product installed, you can
apply the listed LTI commands to idmodel objects, including idarx,
idgrey, idpoly, and idss models. You can also use the overloaded
operations +, -, and *. The same operations are performed and the
result is delivered as an idmodel. The original covariance information
is lost most of the time, however.

Examples You have two more or less identical processes connected in series.
Estimate a model for one of them, and use that to form an initial
estimate for a model of the connected process.

% data concerns one of the processes
m = pem(data)
% data2 is from the entire connected process
m2 = pem(data2,m*m)

2-276

merge (iddata)

Purpose Merge data sets into iddata object

Syntax dat = merge(dat1,dat2,....,datN)

Description dat collects the data sets in dat1, ...,datN into one iddata object,
with several experiments. The number of experiments in dat will be
the sum of the number of experiments in datk. For the merging to be
allowed, a number of conditions must be satisfied:

• All of datk must have the same number of input channels, and the
InputNames must be the same.

• All of datk must have the same number of output channels, and the
OutputNames must be the same. If some input or output channel is
lacking in one experiment, it can be replaced by a vector of NaNs to
conform with these rules.

• If the ExperimentNames of datk have been specified as something
other than the default 'Exp1', 'Exp2', etc., they must all be unique.
If default names overlap, they are modified so that dat will have a
list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input
properties (Period, InterSample) might be different in the different
experiments.

You can retrieve the individual experiments by using the command
getexp. You can also retrieve them by subreferencing with a fourth
index.

dat1 = dat(:,:,:,ExperimentNumber)

or

dat1 = dat(:,:,:,ExperimentName)

Storing multiple experiments as one iddata object can be very useful
for handling experimental data that has been collected on different

2-277

merge (iddata)

occasions, or when a data set has been split up to remove “bad” portions
of the data. All the toolbox routines accept multiple-experiment data.

Examples Bad portions of data have been detected around sample 500 and
between samples 720 to 730. Cut out these bad portions and form
a multiple-experiment data set that can be used to estimate models
without the bad data destroying the estimate.

dat = merge(dat(1:498),dat(502:719),dat(731:1000))
m = pem(dat)

Use the first two parts to estimate the model and the third one for
validation.

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

See also iddemo #9.

See Also iddata

getexp

2-278

merge

Purpose Merge estimated models

Syntax m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)

Description The models m1,m2,...,mN must all be of the same structure, just
differing in parameter values and covariance matrices. Then m is the
merged model, where the parameter vector is a statistically weighted
mean (using the covariance matrices to determine the weights) of the
parameters of mk.

When two models are merged,

[m, tv] = merge(m1,m2)

returns a test variable tv. It is distributed with n degrees of freedom,
if the parameters of m1 and m2 have the same means. Here n is the
length of the parameter vector. A large value of tv thus indicates that
it might be questionable to merge the models.

For idfrd models, merge is a statistical average of two responses in
the individual models, weighted using inverse variances. You can only
merge two idfrd models with responses at the same frequencies and
nonzero covariances.

Merging models is an alternative to merging data sets and estimating a
model for the merged data.

m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

and

mb = arx(merge(z1,z2),[2 3 4]);

result in models ma and mb that are related and should be close. The
difference is that merging the data sets assumes that the signal-to-noise

2-279

merge

ratios are about the same in the two experiments. Merging the models
allows one model to be much more uncertain, for example, due to more
disturbances in that experiment. If the conditions are about the same,
we recommend that you merge data rather than models, since this is
more efficient and typically involves better conditioned calculations.

2-280

midprefs

Purpose Set directory for storing idprefs.mat containing GUI startup
information

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables
for customized choices. These include the window layout, the default
choices of plot options, and names and directories of the four most
recent sessions with ident. This information is stored in the file
idprefs.mat, which should be placed on the user’s MATLABPATH. The
default, automatic location for this file is in the same directory as the
user’s startup.m file.

midprefs is used to select or change the directory where you store
idprefs.mat. Either type midprefs and follow the instructions, or give
the directory name as the argument. Include all directory delimiters, as
in the PC case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX® case

midprefs('/home/ljung/matlab/')

See Also ident

2-281

misdata

Purpose Reconstruct missing input and output data

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

Description Data is time-domain input-output data in the iddata object format.
Missing data samples (both in inputs and in outputs) are entered as
NaNs.

Datae is an iddata object where the missing data has been replaced
by reasonable estimates.

Model is any idmodel (idarx, idgrey, idpoly, idss) used for the
reconstruction of missing data.

If no suitable model is known, it is estimated in an iterative fashion
using default order state-space models.

Maxiter is the maximum number of iterations carried out (the default
is 10). The iterations are terminated when the difference between two
consecutive data estimates differs by less than Tol%. The default value
of Tol is 1.

Algorithm For a given model, the missing data is estimated as parameters so as to
minimize the output prediction errors obtained from the reconstructed
data. See Section 14.2 in Ljung (1999). Treating missing outputs as
parameters is not the best approach from a statistical point of view, but
is a good approximation in many cases.

When no model is given, the algorithm alternates between
estimating missing data and estimating models, based on the current
reconstruction.

2-282

neuralnet

Purpose Class representing neural network object created in Neural
Network Toolbox product for estimating nonlinear ARX and
Hammerstein-Wiener models

Syntax n=neuralnet(Network)

Description neuralnet is an object that stores the neural network nonlinearity
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

n=neuralnet(Network) creates a neural network nonlinearity
estimator based on the network object you created using the Neural
Network Toolbox product.

The neural network must meet the following requirements:

• Neural network must be created using the Neural Network Toolbox
newff or newcf command (feedforward networks used for function
approximation).

• Neural network must represent a static mapping between the inputs
and the output. It should not contain I/O delays or feedback.

• Neural network must have one output. If you want to use neural
networks for multiple-output nonlinear ARX model, you must assign
a separate neuralnet estimator for each output—that is, each
estimator must represent a single-output network object.

Use evaluate(n,x) to compute the value of the function defined by
the neuralnet object n at x.

Remarks Use neuralnet to define a nonlinear function y F x= () , where F is
a multilayer feedforward neural network, as defined in the Neural
Network Toolbox documentation.

y is a scalar and x is an m-dimensional row vector.

2-283

neuralnet

When you have installed the Neural Network Toolbox product, you
can create a multilayer feedforward neural network using the Neural
Network Toolbox function newff:

ff = newff(P,T,[nL_1,nL_2,..,nL_r],{tf_1,tf_2,...,tf_r})

where P is an m-by-N matrix containing inputs x, and T is a 1-by-Nmatrix
containing output (target) values for one of the model outputs. You can
also use the Neural Network Toolbox function newcf.

There are r+1 layers and nL_k neurons in the kth layer, except for
the last layer. The last layer has one neuron assigned automatically,
such that nL_(r+1)=1. The transfer function (or unit function) in the
kth layer is tf_k.

If m is unknown at the time of creation of the network, use P =
zeros(0,N) with arbitrary N>0. After this initialization, m is adjusted to
the estimation data by nlarx or nlhw. Similarly, you can set T to any
vector (number of rows=1).

neuralnet
Properties

You include the property as an argument in the constructor to specify
the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List Network property value
get(n)
n.Network

You can also use the set function to set the value of particular
properties. For example:

set(d, 'Network', net_obj)

The first argument to set must be the name of a MATLAB variable.

2-284

neuralnet

Property Name Description

Network Neural network object. You must use the Neural Network
Toolbox newff or newcf command to create such an object.

The newff and newcf commands automatically create a network object
configured for use with the System Identification Toolbox software.
When you manually configure the network object (net), specify its
properties as follows:

• net.numInputs=1

The single input can be a vector.

• net.numLayers

Must be a positive integer (nL).

• net.inputConnect=[1;zeros(nL-1,1)]

The first layer must be connected to the input.

• net.outputConnect=[zeros(1,nL-1) 1]

The last layer must be connected to the output.

• net.layerConnect

Must be an nL-by-nL logical matrix that satisfies the following
conditions:

- Each layer, except the last one, must have its output connected to
another layer all(any(net.layerConnect(:,1:end-1),1),2)
== true

- Each layer, except the first one, must have its input connected to
another layer all(any(net.layerConnect(2:end,:),2),1) ==
true

Typical value is diag(true(1,nL-1),-1) and represents a series
connection from the first layer to the last layer.

• net.trainFcn

2-285

neuralnet

Must be set to the MATLAB training function name (M-file, MEX-file,
built-in, or P-file).

all(any(net.layerConnect(2:end,:),2),1) == true

• net.inputs{1}.size

Must be set zero (undetermined) or a positive integer equal to the
number of regressors.

• net.initFcn='initlay'

Indicates the use of layer initialization functions.

• net.gradientFcn='calcjx'

• net.performFcn

Must be set to the MATLAB performance function name (M-file,
MEX-file, built-in, or P-file).

any(exist(net.performFcn)==[2 3 5 6]) == true

Typical value is 'mse'.

• net.trainParam

Must be a structure with fields:

epochs
goal
max_fail
mem_reduc
min_grad
mu
mu_dec
mu_inc
mu_max
show
showCommandLine
showWindow
time

2-286

neuralnet

• net.layers(k).initFcn for k=1:nL

Must be set to the MATLAB initialization function name (M-file,
MEX-file, built-in, or P-file).

any(exist(net.layers{k}.initFcn)==[2 3 5 6]) == true

Typical value is 'initnw'.

• net.biasConnect=logical(net.biasConnect)

Must be a logical value.

Note The layer numbers, namely the values of k in net.layers{k},
are labels referring to the different layers. The layers are not
necessarily connected in the natural order indicated by k. It means
that, in principle, net.layers{1} is not necessarily the input
layer, and net.layers{end} is not necessarily the output layer.
However, topologically, there is no loss of generality to assume that
net.layers{1} is the input layer and net.layers{end} is the output
layer. The previous requirements make these assumptions to simplify
how you can validate your network object.

Algorithm When the idnlarx property Focus is 'Prediction', neuralnet uses
the train method of the network object in the Neural Network Toolbox
software for estimating parameters.

You cannot use nerualnet when Focus is 'Simulation' because this
nonlinearity estimator is not differentiable. Minimization of simulation
error requires differentiable nonlinear functions.

Examples Use neuralnet to specify the neural network nonlinearity estimator in
nonlinear ARX and Hammerstein-Wiener models. For example:

% Create network object using Neural Network Toolbox
net_obj=newff(zeros(0,10),rand(1,10),[6 8 2],...

{'logsig','logsig','purelin'})
% Estimate nonlinear ARX model using

2-287

neuralnet

% net_obj as the neural network
m=nlarx(z1,[2,6,10],neuralnet(net_obj));

See Also nlarx

nlhw

2-288

nkshift

Purpose Shift data sequences

Syntax Datas = nkshift(Data,nk)

Description Data contains input-output data in the iddata format.

nk is a row vector with the same length as the number of input channels
in Data.

Datas is an iddata object where the input channels in Data have been
shifted according to nk. A positive value of nk(ku) means that input
channel number ku is delayed nk(ku) samples.

nkshift supports both frequency- and time-domain data. For
frequency-domain data it multiplies with to obtain the
same effect as shifting in the time domain. For continuous-time
frequency-domain data (Ts = 0), nk should be interpreted as the shift
in seconds.

nkshift lives in symbiosis with the InputDelay property of idmodel:

m1 = pem(dat,4,'InputDelay',nk)

is related to

m2 = pem(nkshift(dat,nk),4);

such that m1 and m2 are the same models, but m1 stores the delay
information and uses this information when computing the frequency
response, for example. When using m2, the delay value must be
accounted for separately when computing time and frequency responses.

Note the difference from the idss and idpoly property nk.

m3 = pem(dat,4,'nk',nk)

gives a model that itself explicitly contains a delay of nk samples. In
contrast, m1 contains a total delay of m1.nk + m1.InputDelay = 4.

2-289

nkshift

See Also Algorithm Properties

idss

2-290

nlarx

Purpose Estimate nonlinear ARX models

Syntax m = nlarx(data,[na nb nk])
m = nlarx(data,[na nb nk],Nonlinearity)
m = nlarx(data,[na nb nk],'CustomRegressors',CustomReg)
m = nlarx(data,[na nb nk],'PropertyName',PropertyValue)

Description m = nlarx(data,[na nb nk]) constructs and estimates a nonlinear
ARX model. data is the estimation data. na, nb, and nk are positive
integers that specify the model orders and delays. For ny output
channels and nu input channels, na is an ny-by-ny matrix whose i-jth
entry gives the number of delayed jth outputs used to compute the
ith output. nb and nk are ny-by-nu matrices, where each row defines
the orders for the corresponding output. By default, the nonlinearity
estimator is the wavelet network (see the wavenet reference page),
which takes all standard regressors as inputs to its linear and nonlinear
functions.

m = nlarx(data,[na nb nk],Nonlinearity) uses the nonlinearity
estimator Nonlinearity. To use the nonlinearity estimator with
default options, specify as a string: 'wavenet', 'sigmoidnet',
'treepartition', or 'linear'. Nonlinearity can also be the
constructor wavenet, sigmoidnet, treepartition, neuralnet, or
customnet. For a neural network, specify the network object you created
using the Neural Network Toolbox software. For a custom network,
specify the custom network you created. For supported nonlinearities,
see “Nonlinearity Estimators for Nonlinear ARX Models”.

m = nlarx(data,[na nb nk],'CustomRegressors',CustomReg)
specifies custom regressors. CustomReg is a customreg object. For
ny output channels, CustomReg is an ny-by-1 cell array of customreg
objects or of cell array of strings.

m = nlarx(data,[na nb nk],'PropertyName',PropertyValue)
constructs and estimates the model using options specified as idnlarx
property name and value pairs.

2-291

nlarx

Inputs data

Time-domain iddata object.

na nb nk

Positive integers that specify the model orders and delays.

For ny output channels and nu input channels, na is an ny-by-ny
matrix whose i-jth entry gives the number of delayed jth outputs
used to compute the ith output. nb and nk are ny-by-nu matrices,
where each row defines the orders for the corresponding output.

Nonlinearity

Nonlinearity estimator object. Specify Nonlinearity as a string
to use the default configuration of the object. Alternatively,
specify these values as object constructors (see the corresponding
nonlinearity reference page).

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting Nonlinearity to
an ny-by-1 cell array or object array of nonlinearity estimators.
To specify the same nonlinearity for all outputs, specify
Nonlinearity as a single nonlinearity estimator.

Nonlinearity Value (Default Nonlinearity
Configuration)

Class

Wavelet network
(default)

'wavenet' or 'wave' wavenet

One layer sigmoid
network

'sigmoidnet' or 'sigm' sigmoidnet

Tree partition 'treepartition' or 'tree' treepartition

F is linear in x 'linear' or [] linear

Specify a multilayered neural network using:

m = nlarx(data,[na nb nk],NNet)

2-292

nlarx

where NNet is the neural network object you create using the
Neural Network Toolbox software. See the neuralnet reference
page.

Specify a custom network by defining a function called
gaussunit.m, as described in the customnet reference page.
Define the custom network object CNetw and estimate the model:

CNetw = cutomnet(@gaussunit);
m = nlarx(data,[na nb nk],CNetw)

Examples Estimate nonlinear ARX model with default settings:

load twotankdata
Ts = 0.2; % Sampling interval is 0.2 min
z = iddata(y,u,Ts); % constructs iddata object
m = nlarx(z,[4 4 1]) % na=nb=4 and nk=1

Estimate nonlinear ARX model with a specific nonlinearity:

NL = wavenet('NumberOfUnits',5);
% Wavelet network has 5 units

m = nlarx(z,[4 4 1],NL)

Estimate nonlinear ARX model with specific algorithm settings:

m = nlarx(z,[4 4 1],'sigmoidnet','MaxIter',50,...
'Focus','Simulation')

% Maximum number of estimation iterations is 50.
% Estimation focus 'simulation' optimizes model for
% simulation applications.

Estimate nonlinear ARX model from time series data:

2-293

nlarx

t = 0:0.01:10;
y = 10*sin(2*pi*10*t)+rand(size(t));
z = iddata(y',[],0.01);
m = nlarx(z,2,'sigmoid')
compare(z,m,1) % compare 1-step-ahead

% prediction pf response

Estimate nonlinear ARX model and avoid local minima:

% Estimate initial model.
load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])

% Perturb parameters slightly to avoid local minima:
m2=init(m1)

% Estimate model with perturbed initial parameter values:
m2=nlarx(z1,m2)

Estimate nonlinear ARX model with custom regressors:

% Load sample data z1 (iddata object).
load iddata1

% Estimate the model parameters:
m = nlarx(z1,[0 0 0],'linear','CustomReg',...

{'y1(t-1)^2',...
'y1(t-2)*u1(t-3)'})

% na=nb=nk=0 means there are no standard regressors.
% 'linear' means that the nonlinear estimator has only
% the linear function.

Estimate nonlinear ARX model with custom regressor object:

% Load sample data z1 (iddata object):
load iddata1

2-294

nlarx

% Define custom regressors as customreg objects:
C1 = customreg(@(x)x^2,{`y1'}, [1]); % y1(t-1)^2
C2 = customreg(@(x,y)x*y,{`y1', `u1'},...

[2 3]); % y1(t-2)*u1(t-3)
C = [C1, C2]; % object array of custom regressors

% Estimate model with custom regressors:
m = nlarx(z1,[0 0 0],`linear',`CustomReg',C);

% List all model regressors:
getreg(m)

Estimate nonlinear ARX model and search for optimum regressors for
input to the nonlinear function:

load iddata1
m = nlarx(z1,[4 4 1],'sigmoidnet',...

'NonlinearRegressors','search');
m.NonlinearRegressors
% regressors indices in nonlinear function

Estimate nonlinear ARX model with selected regressors as inputs to the
nonlinear function:

load iddata1
m = nlarx(z1,[4 4 1],'sigmoidnet',...

'NonlinearReg','input');
% Only input regressors enter the nonlinear function.
% m is linear in past outputs.

Estimate nonlinear ARX model with no linear term in the nonlinearity
estimator:

load iddata1
SNL = sigmoidnet('LinearTerm','off')
m = nlarx(z1,[2 2 1],SNL);

2-295

nlarx

Estimate MIMO nonlinear ARX model that has the same nonlinearity
estimator for all output channels:

m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
sigmoidnet('num',7))

% m uses a sigmoid network with 7 units
% for all output channels.

Estimate MIMO nonlinear ARX model with different nonlinearity
estimator for each output channel:

m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
['wavenet'; sigmoidnet('num',7)])

% first output channel uses a wavelet network
% second output channel uses a sigmoid network with 7 units

See Also addreg | customreg | getreg | idnlarx | init | polyreg

Tutorials • “Example – Using nlarx to Estimate Nonlinear ARX Models”

How To • “Identifying Nonlinear ARX Models”

2-296

nlhw

Purpose Estimate Hammerstein-Wiener models

Syntax m = nlhw(data,[nb nf nk])
m = nlhw(data,[nb nf nk],InputNL,OutputNL)
m = nlhw(data,[nb nf nk],InputNL,OutputNL,'PropertyName',

PropertyValue)

Description m = nlhw(data,[nb nf nk]) creates and estimates a
Hammerstein-Wiener model with orders nb, nf, and nk, specified as
positive integers. nb is the number of zeros plus 1, nf is the number of
poles, and nk is the input delay. By default, both the input and output
nonlinearity estimators are piecewise linear functions (see pwlinear).
data is a time-domain iddata object.

m = nlhw(data,[nb nf nk],InputNL,OutputNL) constructs and
estimates a Hammerstein-Wiener model with specified input
nonlinearity InputNL and output nonlinearity OutputNL. InputNL and
OutputNL can be a string or an estimator object. To use nonlinearity
estimators with default settings, specify InputNL and OutputNL using
strings (such as 'wave' for wavelet network or 'sig' for sigmoid
network). If you need to configure the properties of a nonlinearity
estimator, use its object representation. For supported nonlinearities,
see For supported nonlinearities, see “Nonlinearity Estimators for
Hammerstein-Wiener Models”.

m = nlhw(data,[nb nf
nk],InputNL,OutputNL,'PropertyName',PropertyValue) creates
an idnlhw object using options specified as idnlhw property
name and value pairs.

Inputs data

Time-domain iddata object.

nb nf nk

Order of the linear transfer function, where nb is the number of
zeros plus 1, nf is the number of poles, and nk is the input delay.

2-297

nlhw

For nu inputs and ny outputs, nb, nf and, nk are ny-by-numatrices
whose i-jth entry specifies the orders and delay of the transfer
function from the jth input to the ith output.

InputNL, OutputNL

Input and output nonlinearity estimator objects, respectively.
Specify InputNL and OutputNL as strings to use the default
configuration of the object. Alternatively, specify these values as
object constructors (see the corresponding nonlinearity reference
page).

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting InputNL or
OutputNL to an ny-by-1 cell array or object array of nonlinearity
estimators. To specify the same nonlinearity for all outputs,
specify a single input and output nonlinearity estimator.

Nonlinearity Value (Default Nonlinearity
Configuration)

Class

Piecewise linear
(default)

'pwlinear' or 'pwlin' pwlinear

One layer sigmoid
network

'sigmoidnet' or 'sigm' sigmoidnet

Wavelet network 'wavenet' or 'wave' wavenet

Saturation 'saturation' or 'sat' saturation

Dead zone 'deadzone' or 'dead' deadzone

One-
dimensional
polynomial

'poly1d' or 'poly' poly1d

Unit gain 'unitgain' or [] unitgain

Specify a custom network by defining a function called
gaussunit.m, as described in the customnet reference page.
Define the custom network object CNetw and estimate the model:

2-298

nlhw

CNetw = cutomnet(@gaussunit);
m = nlhw(data,[na nb nk],CNetw)

Examples Estimate a Hammerstein-Wiener model:

load iddata3
m1=nlhw(z3,[4 2 1],'sigmoidnet','deadzone')

Estimate a Hammerstein model with saturation:

load iddata1
% Create a saturation object with lower limit of 0
% and upper limit of 5:

InputNL = saturation('LinearInterval', [0 5]);
% Estimate model with no output nonlinearity.

m = nlhw(z1,[2 3 0],InputNL,[]);

Estimate a Wiener model with a nonlinearity containing 5 sigmoid
units:

load iddata1
m2 = nlhw(z1,[2 3 0],[],sigmoidnet('num', 5))

Estimate a MISO Hammerstein model with a different nonlinearity
for each input:

m = nlhw(data,[nb,nf,nk],...
[sigmoidnet;pwlinear],...
[])

Refine a Hammerstein-Wiener model using successive calls of nlhw:

2-299

nlhw

load iddata3
m3 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone')
m3 = nlhw(z3,m3)
LinearBlock = m3.LinearModel % retrieves the linear block

See Also customnet | deadzone | findop(idnlhw) | linapp |
linearize(idnlhw) | pem | poly1d | pwlinear | saturation |
sigmoidnet | unitgain | wavenet

Tutorials • “Example – Using nlhw to Estimate Hammerstein-Wiener Models”

How To • “Identifying Hammerstein-Wiener Models”

2-300

noisecnv

Purpose Transform idmodel object with noise channels to model with measured
channels only

Syntax mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'norm')

Description mod is any idmodel, idarx, idgrey, idpoly, or idss.

The noise input channels in mod are converted as follows: Consider a
model with both measured input channels u (nu channels) and noise
channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that mod.NoiseVariance
= . The model can also be described with unit variance, using a
normalized noise source v:

• mod1 = noisecnv(mod) converts the model to a representation of
the system [G H] with nu+ny inputs and ny outputs. All inputs are
treated as measured, and mod1 does not have any noise model. The
former noise input channels have names e@yname, where yname is the
name of the corresponding output.

• mod2 = noisecnv(mod,'norm') converts the model to a
representation of the system [G HL] with nu+ny inputs and ny
outputs. All inputs are treated as measured, and mod2 does not
have any noise model. The former noise input channels have names
v@yname, where yname is the name of the corresponding output. Note
that the noise variance matrix factor L typically is uncertain (has a
nonzero covariance). This is taken into account in the uncertainty
description of mod2.

2-301

noisecnv

• If mod is a time series, that is, nu = 0, mod1 is a model that describes
the transfer function H with measured input channels. Analogously,
mod2 describes the transfer function HL.

Note the difference with subreferencing:

• mod('m') gives a description of G only.

• mod('n') gives a description of the noise model characteristics as a
time-series model, that is, it describes H and also the covariance of e.
In contrast, noisecnv(m('n')) describes just the transfer function
H. To obtain a description of the normalized transfer function HL,
use noisecnv(m('n'),'norm').

Converting the noise channels to measured inputs is useful to study the
properties of the individual transfer functions from noise to output. It is
also useful for transforming idmodel objects to representations that do
not handle disturbance descriptions explicitly.

2-302

nuderst

Purpose Set step size for numerical differentiation

Syntax nds = nuderst(pars)

Description The function pem uses numerical differentiation with respect to the
model parameters when applied to state-space structures. The same
is true for many functions that transform model uncertainties to other
representations.

The step size used in these numerical derivatives is determined by the
M-file nuderst. The output argument nds is a row vector whose kth
entry gives the increment to be used when differentiating with respect
to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step
size is the maximum of times the absolute value of the current
parameter and . You can adjust this to the actual value of the
corresponding parameter by editing nuderst. Note that the nominal
value, for example 0, of a parameter might not reflect its normal size.

2-303

nyquist

Purpose Plot Nyquist curve of frequency response with confidence interval

Syntax nyquist(m)
[fr,w] = nyquist(m)
[fr,w,covfr] = nyquist(m)
nyquist(m1,m2,m3,...,w)
nyquist(m1,'PlotStyle1',m2,'PlotStyle2',...)
nyquist(m1,m2,m3,..'sd*5',sd,'mode',mode)

Description nyquist computes the complex-valued frequency response of idmodel
and idfrd models. When invoked without left-hand arguments,
nyquist produces a Nyquist plot on the screen, that is, a graph of the
frequency response’s imaginary part against its real part.

The argument m is an arbitrary idmodel or idfrd model. This model
can be continuous or discrete, and SISO or MIMO. The InputNames and
OuputNames of the models are used to plot the responses for different
I/O channels in separate plots. Pressing the Enter key advances the
plot from one input-output pair to the next one. You can select specific
I/O channels with normal subreferencing: m(ky,ku). With mode =
'same', all plots are given in the same diagram.

nyquist(m,w) explicitly specifies the frequency range or frequency
points to be used for the plot. To focus on a particular frequency interval
[wmin,wmax], set w = {wmin,wmax}. To use particular frequency
points, set w to the vector of desired frequencies. Use logspace to
generate logarithmically spaced frequency vectors. All frequencies
should be specified in rad/s.

nyquist(m1,m2,...,mN) or nyquist(m1,m2,...mN,w) plots the Bode
responses of several idmodels or idfrd models on a single figure. The
models can be mixes of different sizes, and continuous or discrete. The
sorting of the plots is based on the InputNames and OutputNames.

nyquist(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies
which color, line style, and/or marker should be used to plot each
system, as in

nyquist(m1,'r--',m2,'gx')

2-304

nyquist

When sd is specified as a number larger than zero, confidence regions
are also plotted. These are ellipses in the complex plane and correspond
to the region where the true response at the frequency in question is to
be found with a confidence corresponding to sd standard deviations (of
the Gaussian distribution).

If the argument indicating standard deviations is given as in 'sd+5', a
confidence region is plotted for every 5:th frequency, marking the center
point by '+'. The default is 'sd+10'.

Note that the frequencies cannot be specified for idfrd objects. For
those, the plot and response are calculated for the internally stored
frequencies. If the frequencies w are specified when several models are
treated, they will apply to all non-idfrd models in the list. If you want
different frequencies for different models, you should first convert them
to idfrd objects using the idfrd command.

For time-series models (no input channels), the Nyquist plot is not
defined.

Input When nyquist is called with a single system and output arguments,

fr = nyquist(m,w) or [fr,w,covfr] = nyquist(m)

no plot is drawn on the screen. If m has ny outputs and nu inputs, and
w contains Nw frequencies, then fr is an ny-by-nu-by-Nw array such
that fr(ky,ku,k) gives the complex-valued frequency response from
input ku to output ky at the frequency w(k). For a SISO model, use
fr(:) to obtain a vector of the frequency response. The uncertainty
information covfr is a 5-D array where covfr(ky,ku,k,:,:)) is the
2-by-2 covariance matrix of the response from input ku to output ky at
frequency w(k). The 1,1 element is the variance of the real part, the
2,2 element is the variance of the imaginary part, and the 1,2 and 2,1
elements are the covariance between the real and imaginary parts.

squeeze(covfr(ky,ku,k,:,:)) gives the covariance matrix of the
corresponding response.

2-305

nyquist

If m is a time series (no input), fr is returned as the (power) spectrum
of the outputs, an ny-by-ny-by-Nw array. Hence fr(:,:,k) is the
spectrum matrix at frequency w(k). The element fr(k1,k2,k) is the
cross spectrum between outputs k1 and k2 at frequency w(k). When k1
= k2, this is the real-valued power spectrum of output k1. The covfr
is then the covariance of the spectrum fr, so that covfr(k1,k1,k) is
the variance of the power spectrum of output k1 at frequency w(k). No
information about the variance of the cross spectra is normally given.
(That is, covfr(k1,k2,k) = 0 for k1 not equal to k2.)

If the model m is not a time series, use fr = nyquist(m('n')) to obtain
the spectrum information of the noise (output disturbance) signals.

Examples g = spa(data)
m = n4sid(data,3)
nyquist(g,m,'sd',3)

See Also bode

etfe

ffplot

freqresp

idfrd

spa

spafdr

2-306

n4sid

Purpose Estimate state-space models using subspace method

Syntax m = n4sid(data)
m = n4sid(data,order,'Property1',Value1,...,'PropertyN',ValueN)

Description n4sid estimates models in state-space form and returns an idss
object m. n4sid handles an arbitrary number of inputs and outputs,
including the time-series case (no input). The state-space model is in
the innovations form

If data is continuous-time (frequency-domain) data, a corresponding
continuous-time state-space model is estimated.

data: An iddata object containing the output-input data. Both
time-domain and frequency-domain signals are supported. data can
also be a frd or idfrd frequency-response data object.

order: The desired order of the state-space model. If order is entered
as a row vector (as in order = [1:10]), preliminary calculations for all
the indicated orders are carried out. A plot is then given that shows the
relative importance of the dimension of the state vector. More precisely,
the singular values of the Hankel matrices of the impulse response for
different orders are graphed. You are prompted to select the order,
based on this plot. The idea is to choose an order such that the singular
values for higher orders are comparatively small. If order = 'best',
a model of “best” (default choice) order is computed among the orders
1:10. This is the default choice of order.

Estimating the D Matrix

Whether the D matrix is estimated or not is governed by the property
nk, which is further described below. The default is that D is not
estimated. By setting the kth entry of nk to 0, the kth column of D
(corresponding to the kth input) is estimated. To estimate a full D
matrix thus, let nk = zeros(1,nu) as in

2-307

n4sid

m = n4sid(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

Properties

The list of property name/property value pairs can contain any idss
and algorithm properties. See idss and Algorithm Properties.

idss properties that are of particular interest for n4sid are

• nk: For time-domain data, this gives delays from the inputs to the
outputs, a row vector with the same number of entries as the number
of input channels. Default is nk = [1 1... 1]. Note that delays
of 0 or 1 show up as zeros or estimated parameters in the D matrix.
Delays larger than 1 mean that a special structure of the A, B, and
C matrices is used to accommodate the delays. This also means
that the actual order of the state-space model will be larger than
order. For continuous-time models estimated from continuous-time
(frequency-domain) data, the elements of nk are restricted to the
values 1 and 0.

• CovarianceMatrix (can be abbreviated to 'co'): Setting
CovarianceMatrix to 'None' blocks all calculations of uncertainty
measures. These can take the major part of the computation
time. Note that, for a 'Free' parameterization, the individual
matrix elements cannot be associated with any variance. (These
parameters are not identifiable.) Instead, the resulting model m
stores a hidden state-space model in canonical form that contains
covariance information. This is used when the uncertainty of various
input-output properties is calculated. It can also be retrieved by
m.ss = 'can'. The actual covariance properties of n4sid estimates
are not known today. Instead the Cramer-Rao bound is computed
and stored as an indication of the uncertainty.

• DisturbanceModel: Setting DisturbanceModel to 'None' will
deliver a model with K = 0. This has no direct effect on the dynamics
model other than that the default choice of N4Horizon will not
involve past outputs.

2-308

n4sid

• InitialState: The initial state is always estimated for better
accuracy. However, it is returned with m only if InitialState =
'Estimate'.

Algorithm properties that are of special interest are

• Focus: Assumes the values 'Prediction' (default), 'Simulation',
'Stability', passbands, or any SISO linear filter (given as an LTI or
idmodel object, or as filter coefficients. See Algorithm Properties.)
Setting 'Focus' to 'Simulation' chooses weights that should give a
better simulation performance for the model. In particular, a stable
model is guaranteed. Selecting a linear filter focuses the fit to the
frequency ranges that are emphasized by this filter.

• N4Weight: This property determines some weighting matrices used
in the singular-value decomposition that is a central step in the
algorithm. Two choices are offered: 'MOESP', corresponding to the
MOESP algorithm by Verhaegen, and 'CVA', which is the canonical
variable algorithm by Larimore. The default value is 'N4Weight' =
'Auto', which gives an automatic choice between the two options.
m.EstimationInfo.N4Weight tells you what the actual choice turned
out to be.

• N4Horizon: Determines the prediction horizons forward and
backward used by the algorithm. This is a row vector with three
elements: N4Horizon = [r sy su], where r is the maximum
forward prediction horizon. That is, the algorithm uses up to r
step-ahead predictors. sy is the number of past outputs, and su is
the number of past inputs that are used for the predictions. See
pages 209 and 210 in Ljung (1999) for the exact meaning of this.
These numbers can have a substantial influence on the quality of
the resulting model, and there are no simple rules for choosing
them. Making 'N4Horizon' a k-by-3 matrix means that each row of
'N4Horizon' is tried, and the value that gives the best (prediction)
fit to data is selected. (This option cannot be combined with selection
of model order.) If the property 'Display' is 'On', information about
the results is given in the MATLAB Command Window.

2-309

n4sid

If you specify only one column in 'N4Horizon', the interpretation
is r=sy=su. The default choice is 'N4Horizon' = 'Auto', which
uses an Akaike Information Criterion (AIC) for the selection of sy
and su. If 'DisturbanceModel' = 'None', sy is set to 0. Typing
m.EstimationInfor.N4Horizon will tell you what the final choices
of horizons were.

Algorithm The algorithm is described in Section 10.6 in Ljung (1999).

Examples Build a fifth-order model from data with three inputs and two outputs.
Try several choices of auxiliary orders. Look at the frequency response
of the model.

z = iddata([y1 y2],[u1 u2 u3]);
m = n4sid(z,5,'n4h',[7:15]','Display','on');
bode(m,'sd',3)

Estimate a continuous-time model, in a canonical form
parameterization, focusing on the simulation behavior. Determine the
order yourself after seeing the plot of singular values.

m = n4sid(z,[1:10],'foc','sim','ssp','can','ts',0)
bode(m)

Learn
More

For definition of state-space models and how to estimate them from
input-output data, see “Identifying State-Space Models”.

For more information about estimating state-space models from
time-series data, see “Estimating State-Space Time-Series Models”.

Other references:

van Overschee, P., and B. De Moor, Subspace Identification of Linear
Systems: Theory, Implementation, Applications, Kluwer Academic
Publishers, 1996.

Verhaegen, M., “Identification of the deterministic part of MIMO state
space models,” Automatica, Vol. 30, pp. 61-74, 1994.

2-310

n4sid

Larimore, W.E., “Canonical variate analysis in identification, filtering
and adaptive control,” In Proc. 29th IEEE Conference on Decision and
Control, pp. 596-604, Honolulu, 1990.

See Also Algorithm Properties

idss

pem

2-311

oe

Purpose Output-error (OE) model parameter estimation

Syntax m = oe(data,[nb nc nk])
m = oe(data,[nb nc nk],'PropertyName',PropertyValue)
m = oe(data,m_initial)

Description m = oe(data,[nb nc nk]) estimates output-error model parameters
and their covariances from input-output data. data is frequency-domain
or time-domain iddata, idfrd, or frd object. m is an idpoly object. nb
and nc are orders of the B and C polynomials, respectively. nk is the
input delay. Orders and delay are scalar for single-input data, and row
vectors for multiple-input data with the same size as the number of
input channels.

m = oe(data,[nb nc nk],'PropertyName',PropertyValue)
estimates Box-Jenkins model using algorithm options specified by
idpoly property name-value pairs. See Algorithm Properties.

m = oe(data,m_initial) refines previously estimated model
m_initial, which is an idpoly object.

For multiple-input systems, nb, nf, and nk are row vectors with as many
entries as there are input channels. Entry number i then describes the
orders and delays associated with the ith input.

oe does not support multiple-output models.

Properties

The structure and the estimation algorithm are affected by any
property name/property value pairs that are set in the input argument
list. Useful properties are 'Focus', 'InitialState', 'InputDelay',
'SearchMethod', 'MaxIter', 'Tolerance', 'LimitError',
'FixedParameter', and 'Display'.

See Algorithm Properties, idpoly, and idmodel for details of these
properties and their possible values.

Use a state-space model for this case (see n4sid and pem).

2-312

oe

Definitions Output-Error (OE) Model

The general Output-Error model structure is:

The orders of the Output-Error model are:

Continuous-Time Output-Error Model

If data is continuous-time (frequency-domain) data, oe estimates a
continuous-time model with transfer function:

The orders of the numerator and denominator are nb and nf, similar
to the discrete-time case. However, the delay nk has no meaning and
you should omit it.

Algorithm Algorithm minimizes prediction errors. oe algorithm is similar to
armax, but oe uses slightly different methods for computing prediction
errors and gradients.

Examples Estimating Output-Error (OE) model of the type

G s
b

s f s f s f
() =

+ + +3
1

2
2 3

:

% Use fast sampled data (Ts = 0.001)
% from a plant with bandwidth of about 500 rad/s.
z = iddata(y,u,0.001);

2-313

oe

zf = fft(z);
zf.ts = 0;
m = oe(zf,[1 3],'foc',[0 500])

See Also Algorithm Properties | EstimationInfo | idpoly | pem | n4sid

2-314

operspec(idnlarx)

Purpose Construct operating point specification object for idnlarx model

Syntax SPEC = operspec(NLSYS)

Description SPEC = operspec(NLSYS) creates an operating point specification
object for the idnlarx model NLSYS. The object encapsulates
constraints on input and output signal values. These specifications
are used to determine an operating point of the idnlarx model using
findop(idnlarx).

Input • NLSYS: idnlarx model.

Output • SPEC: Operating point specification object. SPEC contains the
following properties:

- Input: Structure with fields:

• Value: Initial guess for the values of the input signals. Specify
a vector of length equal to number of model inputs. Default
value: Vector of zeros.

• Min: Minimum value constraint on values of input signals for
the model. Default: -Inf for all channels.

• Max: Maximum value constraint on values of input signals for
the model. Default: Inf for all channels.

• Known: Specifies when Value is known (fixed) or is an initial
guess. Use a logical vector to denote which signals are known
(logical 1, or true) and which have to be estimated using findop
(logical 0, or false). Default value: true.

- Output: Structure with fields:

• Value: Initial guess for the values of the output signals. Default
value: Vector of zeros.

• Min: Minimum value constraint on values of output signals for
the model. Default value: -Inf.

2-315

operspec(idnlarx)

• Max: Maximum value constraint on values of output signals for
the model. Default value: -Inf.

See Also findop(idnlarx)

2-316

operspec(idnlhw)

Purpose Construct operating point specification object for idnlhw model

Syntax SPEC = operspec(NLSYS)

Description SPEC = operspec(NLSYS) creates an operating point specification
object for the idnlhw model NLSYS. The object encapsulates
constraints on input and output signal values. These specifications
are used to determine an operating point of the idnlhw model using
findop(idnlhw).

Input • NLSYS: idnlhw model.

Output • SPEC: Operating point specification object. SPEC contains the
following fields:

- Value: Initial guess for the values of the input signals. Specify a
vector of length equal to number of model inputs. Default value:
Vector of zeros.

- Min: Minimum value constraint on values of input signals for the
model. Default: -Inf for all channels.

- Max: Maximum value constraint on values of input signals for the
model. Default: Inf for all channels.

- Known: Specifies when Value is known (fixed) or is an initial guess.
Use a logical vector to denote which signals are known (logical 1,
or true) and which have to be estimated using findop (logical 0,
or false). Default value: true.

2-317

operspec(idnlhw)

Note

1 If the input is completely known ('Known' field is set to true for all
input channels), then the initial state values are determined using
input values only. In this case, findop(idnlhw) ignores the output
signal specifications.

2 If the input values are not completely known, findop(idnlhw) uses
the output signal specifications to achieve the following objectives:

• Match target values of known output signals (output channels
with Known = true).

• Keep the free output signals (output channels with Known = false)
within the specified min/max bounds.

See Also findop(idnlhw)

2-318

pe

Purpose Prediction errors associated with model and data set

Syntax e = pe(m,data)
[e,x0] = pe(m,data,init)

Description data is the output-input data set, given as an iddata object, and m is any
idmodel or idnlmodel object. Both time-domain and frequency-domain
data are supported, and data can also be an idfrd object.

e is returned as an iddata object, so that e.OutputData contains the
prediction errors that result when model m is applied to the data.

The argument init determines how to deal with the initial conditions:

• init = 'e(stimate)' means that the initial state is chosen so
that the norm of prediction error is minimized. This initial state is
returned as x0.

• init = `d(elayexpand)': Same as 'estimate', but for a model
with nonzero InputDelay, the delays are first converted to explicit
model delays (using inpd2nk) so that they are contained in x0.

• init = 'z(ero)' sets the initial state to zero.

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0i, where x0i is a column vector of appropriate dimension,
uses that value as initial state. For multiexperiment data, x0i may
be a matrix whose columns give different initial states for each
experiment. For a continuous-time model m, x0 is the initial state for
this model. Any modifications of the initial state that sampling might
require are automatically handled. If m has a non-zero InputDelay,
and you need to access the values of the inputs during this delay, you
must first apply inpd2nk(m). If m is continuous in time, it must first
be sampled before inpd2nk can be applied.

2-319

pe

If init is not specified for linear models, its value is determined, as
follows:

• If m.InitialState is 'Estimate', 'Backcast', and 'Auto', init
= 'Estimate'.

• If m.InitialState is 'Zero', init = 'zero'.

• If m.InitialState is 'Model' or 'Fixed', init = 'model'. For
idss, idproc, and idgrey models, init corresponds to the m.x0
values. For other linear models, init = 'zero'.

If init is not specified for idnlgrey models, init = 'Model' is the
default. The values and their estimation behavior are inherited from
m.InitialStates.

If init is not specified for idnlarx models, init = 'Estimate' is the
default. This corresponds to the first few samples of predicted outputs
exactly matching the first few output samples in the data set.

If init is not specified for idnlhw models, init = 'Estimate' is the
default. This computes initial states by minimizing the prediction
errors over the available data range.

The output argument x0 is the value of the initial state used. If data
contains several experiments, x0 is a matrix containing the initial
states from each experiment.

See Also compare

predict

resid

sim

simsd

2-320

pem

Purpose Estimate model parameters using iterative prediction-error
minimization method

Syntax m = pem(data)
m = pem(data,mi)
m = pem(data,mi,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(data,orders)
m = pem(data,'P1D')
m = pem(data,'nx',ssorder)
m = pem(data,'na',na,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = pem(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

How to
Use

If you are using the System Identification Tool GUI, you can specify
PEM for low-order continuous-time process models, linear state-space,
and polynomial models. If you are working in the MATLAB Command
Window, you can use the pem command to both construct and estimate
these linear models and to also estimate linear and nonlinear grey-box
models.

Alternatively, you can use PEM to try to refine initial parameter
estimates for all linear and nonlinear parametric models. For more
information about refining initial model estimates, see Refining Linear
Parametric Models.

Description pem is the basic estimation command in the toolbox and covers a variety
of situations.

data is always an iddata object that contains the input/output data.
Both time-domain and frequency-domain signals are supported. data
can also be an frd or idfrd frequency-response data object. Estimation
of noise models (K in state-space models and A, C, and D in polynomial
models) is not supported for frequency-domain data.

With Initial Model

mi is any idmodel or idnlmodel object. It could be a result of another
estimation routine, or constructed and modified by the constructors
(idarx, idpoly, idss, idgrey, idproc) and set. The properties of mi

2-321

pem

can also be changed by any property name/property value pairs in pem
as indicated in the syntax.

m is then returned as the best fitting model in the model structure
defined by mi. The iterative search is initialized at the parameters of
the initial/nominal model mi. m will be of the same class as mi.

Black-Box State-Space Models

With m = pem(data,n), where n is a positive integer, or m =
pem(data,'nx',n), a state-space model of order n is estimated.

If data is continuous-time (frequency-domain) data, a corresponding
continuous-time state space model is estimated.

The default is that it is estimated in a 'Free' parameterization that
can be further modified by the properties 'nk', 'DisturbanceModel',
and 'InitialState' (see the corresponding reference pages for idss
and n4sid). The model is initialized by n4sid and then further adjusted
by optimizing the prediction error fit.

You can choose among several different orders by

m = pem(data,'nx',[n1,n2,...nN])

and you are then prompted for the “best” order. By

m = pem(data,'best')

an automatic choice of order among 1:10 is made.

m = pem(data)

is short for m = pem(data,'best'). To work with other delays, use, for
example, m = pem(data,'best','nk',[0,...0]).

In this case m is returned as an idss model.

2-322

pem

Estimating the D, K, and X0 Matrices

Whether the D matrix is estimated or not is governed by the property
nk, which is further described below. The default is that D is not
estimated. By setting the kth entry of nk to 0, the kth column of D
(corresponding to the kth input) is estimated. To estimate a full D
matrix, let nk = zeros(1,nu), as in

m = pem(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

For frequency-domain data, K is always fixed to 0. For time-domain
data, K is estimated by default. To fix K to 0 in this case, use

m = pem(data,order,'DisturbanceModel','none')

Similarily, X0 is estimated if 'InitialState' is set to 'Estimate', and
fixed to 0 if 'InitialState' is set to 'Zero'.

Black-Box Multiple-Input-Single-Output Models

The function pem also handles the general multiple-input-single-output
structure

The orders of this general model are given either as

orders = [na nb nc nd nf nk]

or with (...'na',na,'nb',nb,...) as shown in the syntax. Here na,
nb, nc, nd, and nf are the orders of the model, and nk is the delay(s).
For multiple-input systems, nb, nf, and nk are row vectors giving the
orders and delays of each input. (See “What Are Black-Box Polynomial
Models?” in the User’s Guide for a definition of the orders.) When the
orders are specified with separate entries, those not given are taken
as zero.

2-323

pem

For frequency-domain data, only estimation of B and F is supported. It
is simpler to use oe in that case.

In this case, m is returned as an idpoly object.

Continuous-Time Process Models

Entering for the initial model an acronym for a process model, as in

m = pem(data,'P2UI')

will estimate a continuous-time process model of the indicated type. See
the reference page for idproc for details of possible model types and
associated property name/property value pairs.

In this case, m is returned as an idproc model.

Properties In all cases the algorithm is affected by the properties (see Algorithm
Properties for details):

• Focus can be set to 'Prediction' (default), 'Simulation', or a
passband range.

• MaxIter and Tolerance govern the stopping criteria for the iterative
search.

• LimitError deals with how the criterion can be made less sensitive
to outliers and bad data.

• MaxSize determines the largest matrix ever formed by the algorithm.
The algorithm goes into for loops to avoid larger matrices, which can
be more efficient than using virtual memory.

• Display, with possible values 'Off', 'On', and 'Full', governs the
information sent to the MATLAB Command Window.

For black-box state-space models, 'N4Weight' and 'N4Horizon' will
also affect the result, since these models are initialized with an n4sid
estimate. See the reference page for n4sid.

2-324

pem

Typical idmodel properties are (see idmodel properties for more
details):

• Ts is the sampling interval. Set 'Ts'= 0 to obtain a continuous-time
state-space model. For discrete-time models, 'Ts' is automatically
set to the sampling interval of the data. Note that, in the black-box
case, it is usually better to first estimate a discrete-time model, and
then convert that to continuous time using d2c.

• nk is the time delays from the inputs (not applicable to structured
state-space models). Time delays specified by 'nk' will be included
in the model.

• DisturbanceModel determines the parameterization of K for free
and canonical state-space parameterizations, as well as for idgrey
models. It also determines whether a noise model should be included
for idproc models.

• InitialState: The initial state can have a substantial influence on
the estimation result for systems with slow responses. It is most
pronounced for output-error models (K = 0 for state-space and na
= nc = nd =0 for input/output models). The default value 'Auto'”
estimates the influence of the initial state and sets the value to
'Estimate', 'Backcast', or 'Zero' based on this effect. Possible
values of 'InitialState' are 'Auto', 'Estimate', 'Backcast',
'Zero', and 'Fixed'.

Examples Here is an example of a system with three inputs and two outputs. A
canonical form state-space model of order 5 is sought.

z = iddata([y1 y2],[u1 u2 u3]);
m = pem(z,5,'ss','can')

Building an ARMAX model for the response to output 2,

ma = pem(z(:,2,:),'na',2,'nb',[2 3 1],'nc',2,'nk',[1 2 0])

Comparing the models (compare automatically matches the channels
using the channel names),

2-325

pem

compare(z,m,ma)

Algorithm pem uses essentially the same algorithm as armax, with modifications to
the computation of prediction errors and gradients.

PEM uses optimization to minimize the cost function, defined as follows
for scalar outputs:

V G H e tN
t

N
,() = ()

=
∑ 2

1

where e(t) is the difference between the measured output and the
predicted output of the model. For a linear model, this error is defined
by the following equation:

e t H q y t G q u t() () () () ()= −[]−1

e(t) is a vector and the cost function V G HN ,() is a scalar value. The
subscript N indicates that the cost function is a function of the number
of data samples and becomes more accurate for larger values of N. For
multiple-output models, the previous equation is more complex.

For black-box models, PEM estimates an initial model and then varies
the parameter values along a specific direction to decrease the cost
function. As with any nonlinear optimization algorithm, there is a
chance that the model might find a local minimum that is not accurate
for a specific system.

See Also Algorithm Properties

EstimationInfo

armax

bj

oe

2-326

pexcit

Purpose Level of excitation of input signals

Syntax Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

Description Data is an iddata object with time- or frequency-domain signals.

Ped is the degree or order of excitation of the inputs in Data. A row
vector of integers with as many components as there are inputs in Data.
The intuitive interpretation of the degree of excitation in an input
is the order of a model that the input is capable of estimating in an
unambiguous way.

Maxnr is the maximum order tested. Default is min(N/3,50), where N is
the number of input data.

Threshold is the threshold level used to measure which singular values
are significant. Default is 1e-9.

References Section 13.2 in Ljung (1999).

See Also advice

iddata

2-327

plot

Purpose Plot iddata or model objects

Syntax plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)
plot(model)

Description data is the output-input data to be graphed, given as an iddata object.
A split plot is obtained with the outputs on top and the inputs at the
bottom.

One plot for each I/O channel combination is produced. Pressing the
Enter key advances the plot. Typing Ctrl+C aborts the plotting in
an orderly fashion.

To plot a specific interval, use plot(data(200:300)). To plot specific
input/output channels, use plot(data(:,ky,ku)), consistent with the
subreferencing of iddata objects.

If data.intersample = 'zoh', the input is piecewise constant between
sampling points, and it is then graphed accordingly.

To plot severaliddata sets d1,...,dN, use plot(d1,...,dN). I/O
channels with the same experiment name, input name, and output
name are always plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can
be specified

plot(d1,'y:*',d2,'b')

just as in the regular plot command.

model is an idmodel, idnlarx, or idnlhw object.

See Also iddata

2-328

polydata

Purpose Parameters from single-input and single-output polynomial model

Syntax [A,B,C,D,F] = polydata(m)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(m)

Description This is essentially the inverse of the idpoly constructor. It returns the
polynomials of the general model

as contained in the model m.

dA, dB, etc. are the standard deviations of A, B, etc.

m can be any single-output idmodel, that is, not just idpoly.
For multiple-output models you can use [A,B,C,D,F] =
polydata(m(ky,:)) to obtain the polynomials for the kyth output.

See Also idmodel

idpoly

tfdata

2-329

polyreg

Purpose Powers and products of standard regressors

Syntax R = polyreg(model)
R = polyreg(model,'MaxPower',n)
R = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)

Description R = polyreg(model) creates an array R of polynomial regressors up to
the power 2. If a model order has input u and output y, na=nb=2, and
delay nk=1, polynomial regressors are y(t−1)2, u(t−1)2, y(t−2)2, u(t−2)2.
model is an idnlarx object. You must add these regressors to the model
by assigning the CustomRegressors model property or by using addreg.

R = polyreg(model,'MaxPower',n) creates an array R of polynomial
regressors up to the power n. Excludes terms of power 1 and cross
terms, such as y(t−1)*u(t−1).

R = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)
creates an array R of polynomial regressors up to the power n
and includes cross terms (products of standards regressors) when
CrossTermVal is 'on'. By default, CrossTermVal is 'off'.

Examples Create polynomial regressors up to order 2:

% Estimate a nonlinear ARX model with
% na=nb=2 and nk=1.
% Nonlinearity estimator is wavenet.

load iddata1
m = nlarx(z1,[2 2 1])

% Create polynomial regressors:
R = polyreg(m);

% Estimate model:
m = nlarx(z1,[2 2 1],'wavenet','CustomReg',R);

% View all model regressors (standard and custom):
getreg(m)

Create polynomial regressors up to order 3:

2-330

polyreg

R = polyreg(m,'MaxPower',3,'CrossTerm','on')

If the model m that has three standard regressors a, b and c , R includes
a^2, b^2, c^2, a*b, a*c, b*c, a^2*b, a^2*c, a*b^2, a*b*c, a*c^2, b^2*c,
b*c^2, a^3, b^3, and c^3.

See Also addreg | customreg | getreg | idnlarx | nlarx

How To • “Identifying Nonlinear ARX Models”

2-331

poly1d

Purpose Class representing single-variable polynomial nonlinear estimator for
Hammerstein-Wiener models

Syntax t=poly1d('Degree',n)
t=poly1d('Coefficients',C)
t=poly1d(n)

Description poly1d is an object that stores the single-variable polynomial nonlinear
estimator for Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

t=poly1d('Degree',n) creates a polynomial nonlinearity estimator
object of nth degree.

t=poly1d('Coefficients',C) creates a polynomial nonlinearity
estimator object with coefficients C.

t=poly1d(n) a polynomial nonlinearity estimator object of nth degree.

Use evaluate(p,x) to compute the value of the function defined by
the poly1d object p at x.

Remarks Use poly1d to define a nonlinear function y F x= () , where F is a
single-variable polynomial function of x:

F x c x c x c n x c nn n() () () () ()()= + + + + +−1 2 11 …

poly1d
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(p)
% Get value of Coefficients property
p.Coefficients

2-332

poly1d

Property Name Description

Degree Positive integer specifies the degree of the polynomial
Default=1.

For example:

poly1d('Degree',3)

Coefficients 1-by-(n+1) matrix containing the polynomial coefficients.

Examples Use poly1s to specify the single-variable polynomial nonlinearity
estimator in Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,poly1d('deg',3),[]);

where 'deg' is an abbreviation for the property 'Degree'.

See Also nlhw

2-333

predict

Purpose Predict output k steps ahead

Syntax yp = predict(m,data)
[yp,x0p,mpred] = predict(m,data,k,'InitialState',init)

Description data is the output-input data as an iddata object, and m is any idmodel
or idnlmodel object. predict is meaningful only for time-domain data.

The argument k indicates that the k step-ahead prediction of y according
to the model m is computed. In the calculation of yp(t), the model can
use outputs up to time

and inputs up to the current time t. The default value of k is 1.

The output yp is an iddata object containing the predicted values as
OutputData.

x0p is the used (estimated) initial state vector. For multiexperiment
data, x0p is a matrix, whose columns contain the initial states for each
experiment.

The output argument mpred contains the k step-ahead predictor. This
is given as a cell array, whose kth entry is an idpoly model for the
predictor of output number k. Note that these predictor models have as
input both input and output signals in the data set. The channel names
indicate how the predictor model and the data fit together.

init determines how to deal with the initial state:

• init ='e(stimate)’: The initial state is set to a value that minimizes
the norm of the prediction error associated with the model and the
data.

• init = 'd(elayexpand)': Same as 'estimate', but for a model
with nonzero InputDelay, the delays are first converted to explicit
model delays (using inpd2nk) so that they are contained in x0p.

• init = 'z(ero)' sets the initial state to zero.

2-334

predict

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0, where x0 is a column vector of appropriate dimension,
uses that value as initial state. For multiexperiment data, x0 can
be a matrix whose columns give different initial states for each
experiment. For a continuous-time model m, x0 is the initial state for
this model. Any modifications of the initial state that sampling might
require are automatically handled. If m has a non-zero InputDelay,
and you need to access the values of the inputs during this delay, you
must first apply inpd2nk(m). When m is a continuous-time model, it
must first be sampled before inpd2nk can be applied.

If init is not specified for linear models, its value is determined, as
follows:

• If m.InitialState is 'Estimate', 'Backcast', and 'Auto', init
= 'Estimate'.

• If m.InitialState is 'Zero', init = 'zero'.

• If m.InitialState is 'Model' or 'Fixed', init = 'model'. For
idss, idproc, and idgrey models, init corresponds to the m.x0
values. For other linear models, init = 'zero'.

If init is not specified for idnlgrey models, init = 'Model' is the
default. The values and their estimation behavior are inherited from
m.InitialStates.

If init is not specified for idnlarx models, init = 'Estimate' is the
default. This corresponds to the first few samples of predicted outputs
exactly matching the first few output samples in the data set.

If init is not specified for idnlhw models, init = 'Estimate' is the
default. This computes initial states by minimizing the prediction
errors over the available data range.

An important use of predict is to evaluate a model’s properties in
the mid-frequency range. Simulation with sim (which conceptually
corresponds to k = inf) can lead to levels that drift apart, since the
low-frequency behavior is emphasized. One step-ahead prediction is

2-335

predict

not a powerful test of the model’s properties, since the high-frequency
behavior is stressed. The trivial predictor can give good
predictions in case the sampling of the data is fast.

Another important use of predict is to evaluate time-series models.
The natural way of studying a time-series model’s ability to reproduce
observations is to compare its k step-ahead predictions with actual data.

Note that for output-error models, there is no difference between the k
step-ahead predictions and the simulated output, since, by definition,
output-error models only use past inputs to predict future outputs.

Algorithm The model is evaluated in state-space form, and the state equations are
simulated k steps ahead with initial value , where

is the Kalman filter state estimate.

Examples Simulate a time series, estimate a model based on the first half of the
data, and evaluate the four step-ahead predictions on the second half.

m0 = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
y = sim(m0,e);
m = armax(y(1:200),[1 2]);
yp = predict(m,y,4);
plot(y(201:400),yp(201:400))

Note that the last two commands are also achieved by

compare(y,m,4,201:400);

See Also compare

pe

sim

simsd

2-336

predict(idnlarx)

Purpose Predict output k steps ahead for nonlinear ARX model

Syntax YP = predict(MODEL,DATA,K)
YP = predict(SYS,DATA,K,INIT)
YP = predict(MODEL,DATA,K,'InitialState',INIT)

Description YP = predict(MODEL,DATA,K) predicts the k-step ahead output with
an idnlarx model.

YP = predict(SYS,DATA,K,INIT) or YP =
predict(MODEL,DATA,K,'InitialState',INIT) specifies the
initialization.

Input • MODEL: idnlarx model object.

• DATA: iddata object.

• K: Prediction horizon. Old outputs up to time t-K are used to predict
the output at time t. All relevant inputs are used. Default value:
K = 1).

• INIT: initialization specification. INIT can be the following:

- 'e': Assume the initial states of the model are such that the
first N values of the predicted output match the first N samples of
the measured output exactly, where N is the maximum channel
delay in the model (N = max(getDelayInfo(model))). The initial
states are not computed explicitly, but are assumed to exist. The
prediction starts at the (N+1)th sample, while a perfect match is
assumed for the first N samples. If you want prediction of response
values starting from the first data sample, you must estimate
and provide the initial state vector explicitly as described in the
following option for INIT = X0.

- Real column vector X0, for the state vector corresponding to an
appropriate number of output and input data samples prior
to the simulation start time. To build an initial state vector
from a given set of input-output data or to generate equilibrium
states, use data2state(idnlarx), findstates(idnlarx) or

2-337

predict(idnlarx)

findop(idnlarx). For multi-experiment data, X0 may be a
matrix whose columns give different initial states for different
experiments.

- 'z': (Default) Zero initial state, equivalent to a zero vector of
appropriate size.

- iddata object containing output and input data samples prior
to the simulation start time. If it contains more data samples
than necessary, only the last samples are taken into account.
This syntax is equivalent to sim(MODEL, U, 'InitialState',
data2state(MODEL,INIT)) where data2state(idnlarx)
transforms the iddata object INIT to a state vector.

Output YP: Predicted output as an iddata object. If DATA contains multiple
experiments, so will YP.

Note If predict is called without an output argument, MATLAB
software displays the predicted output(s) in a plot window.

See Also sim(idnlarx)

findop(idnlarx)

data2state(idnlarx)

findstates(idnlarx)

2-338

predict(idnlgrey)

Purpose Predict output k steps ahead for nonlinear ODE model

Syntax YP = predict(NLSYS,DATA);
[YP,X0,XFINAL] = predict(NLSYS,DATA);
[YP,X0,XFINAL] = predict(NLSYS,DATA,K);
[YP,X0,XFINAL] = predict(NLSYS,DATA,K,X0INIT);

Description YP = predict(NLSYS,DATA); predicts the k-step ahead output with
an idnlgrey model.

[YP,X0,XFINAL] = predict(NLSYS,DATA); returns the initial states
used in the prediction as well as the final states computed, in addition
to the predicted output.

[YP,X0,XFINAL] = predict(NLSYS,DATA,K); specifies the prediction
horizon to use during prediction.

[YP,X0,XFINAL] = predict(NLSYS,DATA,K,X0INIT); specifies the
initialization for the k-step ahead prediction.

Input • NLSYS: idnlgrey model for which output is to be predicted.

• DATA: Input-output data [Y U]. U is the input data that can be given
either as an iddata object or as a matrix U = [U1 U2 ... Um],
where the k:th column vector is input Uk. Similarly, Y is either an
iddata object or a matrix of outputs (with as many columns as there
are outputs). For time-continuous idnlgrey objects, DATA passed as a
matrix will lead to that the data sample interval, Ts, is set to one.

• K: Prediction horizon. K and can be set to an integer between 1
and inf (pure simulation). As idnlgrey assumes an output error
model structure, where prediction and simulation coincide, K has
no meaning.

• X0INIT: Initial state to use. It can take the following values:

- 'zero' : Zero initial state x(0) with all states fixed
(nlsys.InitialStates.Fixed is thus ignored).

2-339

predict(idnlgrey)

- 'fixed': (or NLSYS.InitialState) Determines the
values of the model initial states, but all states are fixed
(NLSYS.InitialStates.Fixed is ignored).

- 'estimate': NLSYS.InitialState determines the value
of the initial states and all initial states are estimated
(NLSYS.InitialStates.Fixed is ignored).

- (Default) 'model': NLSYS.InitialState determines the value of
the initial states, which initial states to estimate, and minimum
and maximum state values.

- vector/matrix: Column vector of initial states. For
multiple-experiment DATA, x(0) can be a matrix where each column
contains initial states for the corresponding experiment. All initial
states are fixed (nlsys.InitialStates.Fixed is ignored).

- struct array : An Nx-by-1 structure array with fields:

• Name: Name of the state (a string).

• Unit: Unit of the state (a string).

• Value: Value of the states (a finite real 1-by-Ne vector, where Ne
is the number of experiments.)

• Minimum: Minimum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
minimum value).

• Maximum: Maximum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
maximum value).

• (Default) Fixed: Uses initial state values
from NLSYS.InitialState.Value. Ignores
NLSYS.InitialState.Fixed.

The initial state can also be specified using the property-value pair
InitialState or X0, followed by the value X0INIT. For example:
predict(NLSYS,DATA,K,'InitialState',X0INIT).

2-340

predict(idnlgrey)

Output • YP: Predicted output. If DATA is an iddata object, then YP will also
be an iddata object. Otherwise, YP will be a matrix where the
k:th output is found in the k:th column of YP. If DATA is a multiple
experiment iddata object, then YP will be as well.

• X0: Initial states. In the single experiment case it is a column vector
of length Nx. For multi-experiment data, X0 is an Nx-by-Ne matrix
with the ith column specifying the initial state of experiment i.

• XFINAL: Final states computed. In the single experiment case it is a
column vector of length Nx. For multi-experiment data, XFINAL is an
Nx-by-Ne matrix with the ith column specifying the initial state of
experiment i.

Note If predict is called without an output argument, MATLAB
software displays the predicted output(s) in a plot window.

See Also sim(idnlgrey)

pe

pem

2-341

predict(idnlhw)

Purpose Predict output k steps ahead for Hammerstein-Wiener model

Syntax YP = predict(MODEL,DATA,K)
YP = predict(MODEL,DATA,K,INIT)
YP = predict(MODEL,DATA,K,'InitialState',INIT)

Description YP = predict(MODEL,DATA,K) predicts the k-step ahead output with
an idnlhw model.

YP = predict(MODEL,DATA,K,INIT) or YP =
predict(MODEL,DATA,K,'InitialState',INIT) specifies the
initialization.

Input • MODEL: idnlhw model object.

• DATA: iddata object.

• K: Prediction horizon. Old outputs up to time t-K are used to predict
the output at time t. All relevant inputs are used. Default value:
K = 1).

• INIT: Initialization specification. INIT can be the following:

- 'e': Estimate initial states minimizing the sum of squared
prediction errors. To compute the initial state estimates explicitly,
use findstates(idnlhw).

- Real column vector X0 for the initial state vector. To build an
initial state vector from a given set of input-output data or
to generate equilibrium states, see findstates(idnlhw) and
findop(idnlhw). For multi-experiment data, X0 may be a
matrix whose columns give different initial states for different
experiments.

- 'z': (Default) Zero initial state, equivalent to a zero vector of
appropriate size.

Output YP: Predicted output as an iddata object. If DATA contains multiple
experiments, so will YP.

2-342

predict(idnlhw)

Note If predict is called without an output argument, MATLAB
software displays the predicted output(s) in a plot window.

See Also findop(idnlhw)

findstates(idnlhw)

sim(idnlhw)

2-343

present

Purpose Display model information, including estimated uncertainty

Syntax present(m)

Description The present function displays the model m, together with the estimated
standard deviations of the parameters, loss function, and Akaike’s Final
Prediction Error (FPE) Criterion (which essentially equals the AIC). It
also displays information about how m was created.

m is any idmodel or idnlmodel object.

present thus gives more detailed information about the model than the
standard display function.

2-344

pwlinear

Purpose Class representing piecewise-linear nonlinear estimator for
Hammerstein-Wiener models

Syntax t=pwlinear('NumberOfUnits',N)
t=pwlinear('BreakPoints',BP)
t=pwlinear(Property1,Value1,...PropertyN,ValueN)

Description pwlinear is an object that stores the piecewise-linear nonlinear
estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

t=pwlinear('NumberOfUnits',N) creates a piecewise-linear
nonlinearity estimator object with N breakpoints.

t=pwlinear('BreakPoints',BP) creates a piecewise-linear
nonlinearity estimator object with breakpoints at values BP.

t=pwlinear(Property1,Value1,...PropertyN,ValueN) creates a
piecewise-linear nonlinearity estimator object specified by properties in
“pwlinear Properties” on page 2-346.

Use evaluate(p,x) to compute the value of the function defined by
the pwlinear object p at x.

Remarks Use pwlinear to define a nonlinear function y F x= () , where F is a
piecewise-linear (affine) function of x and there are n breakpoints
(x_k,y_k), k=1,...,n. y_k = F(x_k). F is linearly interpolated
between the breakpoints.

y and x are scalars.

F is also linear to the left and right of the extreme breakpoints. The
slope of these extension is a function of x_i and y_i breakpoints. The
breakpoints are ordered by ascending x-values, which is important
when you set a specific breakpoint to a different value.

There are minor deviations from the breakpoint values you set and
the values actually stored in the object because the toolbox represent
breakpoints differently internally.

2-345

pwlinear

pwlinear
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(p)
% Get value of NumberOfUnits property
p.NumberOfUnits

Property Name Description

NumberOfUnits Integer specifies the number of breakpoints.
Default=10.

For example:

pwlinear('NumberOfUnits',5)

BreakPoints 2-by-n matrix containing the breakpoint x and y value,
specified using the following format:

[x_1,x_2,...,x_n;y_1,y_2,...,y_n]

If set to a 1-by-n vector, the values are interpreted as x-values
and the corresponding y-values are set to zero.

Examples Use pwlinear to specify the piecewise nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,pwlinear('Br',[-1:0.1:1]),[]);

The piecewise nonlinearity is initialized at the specified breakpoints.
The breakpoint values are adjusted to the estimation data by nlhw.

See Also nlhw

2-346

pzmap

Purpose Plot zeros and poles with confidence interval

Syntax pzmap(m)
pzmap(m,'sd',sd)
pzmap(m1,m2,m3,...)
pzmap(m1,'PlotStyle1',m2,'PlotStyle2',...,'sd',sd)
pzmap(m1,m2,m3,..,'sd',sd,'mode',mode,'axis',axis)

Description m is any idmodel object: idarx, idgrey, idss, idproc, or idpoly.

The zeros and poles of m are graphed, with o denoting zeros and x
denoting poles. Poles and zeros at infinity are ignored. For discrete-time
models, zeros and poles at the origin are also ignored.

The Property/Value pairs 'sd'/sd, 'mode'/mode and `axis'/axis
can appear in any order. They are explained below.

If sd has a value larger than zero, confidence regions around the poles
and zeros are also graphed. The regions corresponding to sd standard
deviations are marked. The default value is sd = 0. Note that the
confidence regions might sometimes stretch outside the plot, but they
are always symmetric around the indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a
unit circle is also drawn. For continuous-time models, the real and
imaginary axes are drawn.

When mi contains information about several different input/output
channels, you have the following options:

mode = 'sub' splits the screen into several plots, one for each
input/output channel. These are based on the InputName and
OutputName properties associated with the different models.

mode = 'same' gives all plots in the same diagram. Pressing the Enter
key advances the plots.

mode = 'sep' erases the previous plot before the next channel pair is
treated.

The default value is mode = 'sub'.

2-347

pzmap

axis = [x1 x2 y1 y2] fixes the axis scaling accordingly. axis = s
is the same as

axis = [-s s -s s]

You can select the colors associated with the different models by using
the argument PlotStyle. Use PlotStyle = 'b', 'g', etc. Markers
and line styles are not used.

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance
= . The model can also be described with a unit variance, using a
normalized noise source v.

Then,

• pzmap(m) plots the zeros and poles of the transfer function G.

• pzmap(m('n')) plots the zeros and poles of the transfer function H
(ny inputs and ny outputs). The input channels have names e@yname,
where yname is the name of the corresponding output.

• If m is a time series, that is nu = 0, pzmap(m) plots the zeros and
poles of the transfer function H.

• pzmap(noisecnv(m)) plots the zeros and poles of the transfer
function [G H] (nu+ny inputs and ny outputs). The noise input
channels have names e@yname, where yname is the name of the
corresponding output.

2-348

pzmap

• pzmap(noisecnv(m,'norm') plots the zeros and poles of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input
channels have names v@yname, where yname is the name of the
corresponding output.

Examples mbj = bj(data,[2 2 1 1 1]);
mar = armax(data,[2 2 2 1]);
pzmap(mbj,mar,'sd',3)

shows all zeros and poles of two models along with the confidence
regions corresponding to three standard deviations.

See Also idmodel

zpkdata

2-349

rarmax

Purpose Estimate recursively parameters of ARMAX or ARMA models

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the
delay. Specifically,

See “What Are Black-Box Polynomial Models?” for more information.

If z represents a time series y and nn = [na nc], rarmax estimates the
parameters of an ARMA model for y.

Only single-input, single-output models are handled by rarmax. Use
rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order:

2-350

rarmax

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adm and adg.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to rarmax with the same model orders. (This call
could be a dummy call with default input arguments.) The default
values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44), (11.47)
through (11.49) of Ljung (1999) is implemented. See “Algorithms for
Recursive Estimation” for more information.

Examples Compute and plot, as functions of time, the four parameters in a
second-order ARMA model of a time series given in the vector y. The
forgetting factor algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)

2-351

rarx

Purpose Estimate parameters of ARX or AR models recursively

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description thm = rarx(z,nn,adm,adg) estimates the parameters thm of
single-output ARX model from input-output data z and model orders nn
using the algorithm specified by adm and adg. If z is a time series y and
nn = na, rarx estimates the parameters of a single-output AR model.

[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0) estimates
the parameters thm, the predicted output yhat, final values of the
scaled covariance matrix of the parameters P, and final values of the
data vector phi of single-output ARX model from input-output data z
and model orders nn using the algorithm specified by adm and adg. If
z is a time series y and nn = na, rarx estimates the parameters of
a single-output AR model.

Definitions The ARX model structure is defined, as follows:

Models with several inputs are defined, as follows:

Inputs z
Name of the matrix iddata object that represents the input-output
data or a matrix z = [y u], where y and u are column vectors.

For multiple-input models, the u matrix contains each input as a
column vector:

2-352

rarx

u = [u1 ... unu]

nn
For input-output models, specifies the structure of the ARX model
as:

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the
delay.

For multiple-input models, nb and nk are row vectors that define
orders and delays for each input.

For time-series models, nn = na, where na is the order of the AR
model.

Note The delay nk must be larger than 0. If you want nk =
0, shift the input sequence appropriately and use nk = 1 (see
nkshift).

adm and adg
adm = 'ff' and adg = lam specify the forgetting factor algorithm
with the forgetting factor λ=lam. This algorithm is also known as
recursive least squares (RLS). In this case, the matrix P has the
following interpretation: R2/2 * P is approximately equal to the
covariance matrix of the estimated parameters.R2 is the variance
of the innovations (the true prediction errors e(t)).

adm ='ug' and adg = gam specify the unnormalized gradient
algorithm with gain gamma = gam. This algorithm is also known
as the normalized least mean squares (LMS).

2-353

rarx

adm ='ng' and adg = gam specify the normalized gradient or
normalized least mean squares (NLMS) algorithm. In these cases,
P is not applicable.

adm ='kf' and adg =R1 specify the Kalman filter based algorithm
with R2=1 and R1 = R1. If the variance of the innovations e(t)
is not unity but R2; then R2* P is the covariance matrix of the
parameter estimates, while R1 = R1 /R2 is the covariance matrix of
the parameter changes.

th0
Initial value of the parameters in a row vector, consistent with
the rows of thm.

Default: All zeros.

P0
Initial values of the scaled covariance matrix of the parameters.

Default: 104 times the identity matrix.

phi0
The argument phi0 contains the initial values of the data vector:

If z = [y(1),u(1); ... ;y(N),u(N)], phi0= and phi=
. For online use of rarx, use phi0, th0, and P0 as the

previous outputs phi, thm (last row), and P.

Default: All zeros.

Outputs thm
Estimated parameters of the model. The kth row of thm contains
the parameters associated with time k; that is, the estimate
parameters are based on the data in rows up to and including row
k in z. Each row of thm contains the estimated parameters in
the following order:

2-354

rarx

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

For a multiple-input model, the b are grouped by input. For
example, the b parameters associated with the first input are
listed first, and the b parameters associated with the second input
are listed next.

yhat
Predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on
all past data.

P
Final values of the scaled covariance matrix of the parameters.

phi
phi contains the final values of the data vector:

Examples Adaptive noise canceling: The signal y contains a component that
originates from a known signal r. Remove this component by recursively
estimating the system that relates r to y using a sixth-order FIR model
and the NLMS algorithm.

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

If this is an online application, you can plot the best estimate of the
signal y - noise at the same time as the data y and u become available,
use the following code:

phi = zeros(6,1);
P=1000*eye(6);
th = zeros(1,6);

2-355

rarx

axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% Use a while loop
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time + Dt
end

This example uses a forgetting factor algorithm with a forgetting factor
of 0.98. readAD is an M-file that reads the value of an A/D converter at
the indicated time instant.

See Also nkshift

rarmax

rbj

roe

rpem

rplr

“Algorithms for Recursive Estimation”

2-356

rbj

Purpose Estimate recursively parameters of Box-Jenkins models

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Box-Jenkins model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and
nk is the delay. Specifically,

See “What Are Black-Box Polynomial Models?” for more information.

Only single-input, single-output models are handled by rbj. Use rpem
for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.

2-357

rbj

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adm and adg.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to rbj with the same model orders. (This call could
be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also “Algorithms for Recursive Estimation”.

See Also nkshift

rarmax

rarx

roe

rpem

rplr

2-358

realdata

Purpose Determine whether iddata is based on real-valued signals

Syntax realdata(data)

Description realdata returns 1 if

• data contains only real-valued signals.

• data contains frequency-domain signals, obtained by Fourier
transformation of real-valued signals.

Otherwise realdata returns 0.

Notice the difference with isreal:

load iddata1
isreal(z1); % returns 1
zf = fft(z1);
isreal(zf) % returns 0
realdata(zf) % returns 1
zf = complex(zf) % adds negative frequencies to zf
realdata(zf) % still returns 1

2-359

resample

Purpose Resample time-domain data by decimation or interpolation (requires
Signal Processing Toolbox software)

Syntax resample(data,P,Q)
resample(data,P,Q,order)

Description resample(data,P,Q) resamples data such that the data is interpolated
by a factor P and then decimated by a factor Q. resample(z,1,Q) results
in decimation by a factor Q.

resample(data,P,Q,order) filters the data by applying a filter of
specified order before interpolation and decimation.

Input data
Name of time-domain iddata object. Can be input-output or
time-series data.

Data must be sampled at equal time intervals.

P, Q
Integers that specify the resampling factor, such that the new
sampling interval is Q/P times the original one.

(Q/P)>1 results in decimation and (Q/P)<1 results in
interpolation.

order
Order of the filters applied before interpolation and decimation.

Default: 10

Algorithm If you have installed the Signal Processing Toolbox software, resample
calls the Signal Processing Toolbox resample function. The algorithm
takes into account the intersample characteristics of the input signal,
as described by data.InterSample.

Examples In this example, you increase the sampling rate by a factor of 1.5 and
compare the resampled and the original data signals.

2-360

resample

plot(u)
ur = resample(u,3,2);
plot(u,ur)

See Also idresamp

2-361

resid

Purpose Compute and test model residuals (prediction errors)

Syntax resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

Description data contains the output-input data as an iddata object. Both
time-domain and frequency-domain data are supported. data can also
be an idfrd object.

m is any idmodel or idnlmodel object.

In all cases the residuals e associated with the data and the model are
computed. This is done as in the command pe with a default choice
of init.

When called without output arguments, resid produces a plot. The plot
can be one of three kinds depending on the argument Type:

• Type = 'Corr' (only available for time-domain data): The
autocorrelation function of e and the cross correlation between e
and the input(s) u are computed and displayed. The 99% confidence
intervals for these values are also computed and shown as a yellow
region. The computation of the confidence region is done assuming
e to be white and independent of u. The functions are displayed up
to lag M, which is 25 by default.

• Type = 'ir': The impulse response (up to lag M, which is 25 by
default) from the input to the residuals is plotted with a 99%
confidence region around zero marked as a yellow area. Negative
lags up to M/4 are also included to investigate feedback effects. The
result is the same as impulse(e,'sd',2.58,M).

• Type = 'fr': The frequency response from the input to the residuals
(based on a high-order FIR model) is shown as a Bode plot. A 99%
confidence region around zero is also marked as a yellow area.

2-362

resid

The default for time-domain data is Type = 'Corr'. For
frequency-domain data, the default is Type = 'fr'.

With an output argument, no plot is produced, and e is returned with
the residuals (prediction errors) associated with the model and the data.
It is an iddata object with the residuals as outputs and the input in
data as inputs. That means that e can be directly used to build model
error models, that is, models that describe the dynamics from the input
to the residuals (which should be negligible if m is a good description
of the system).

Examples Here are some typical model validation commands.

e = resid(m,data);
plot(e)
compare(data,m);

To compute a model error model, that is, a model from the input to
the residuals to see if any essential unmodeled dynamics are left, do
the following:

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,'fill')

References Ljung (1999), Section 16.6.

See Also compare

predict

sim

simsd

2-363

retrend

Purpose Add offsets or trends to data signals

Syntax data = retrend(data_d,T)

Description data = retrend(data_d,T) returns a data object data by adding the
trend information T to each signal in data_d. data_d is a time-domain
iddata object. T is an TrendInfo object.

Examples Subtract means from input-output signals, estimate a linear model,
and retrend the simulated output:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Remove the mean from the data
[data_d,T] = detrend(data,0)
% Estimate a linear ARX model
m = arx(data_d,[2 2 1])
% Simulate the model output
% with zero initial states
y_sim = sim(m,data_d(:,[],:));
% Retrend the simulated model output
y_tot = retrend(y_sim,T);

See Also getTrend

detrend

TrendInfo

“Handling Offsets and Trends in Data”

2-364

roe

Purpose Estimate recursively output-error models (IIR-filters)

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the output-error model structure

are estimated using a recursive prediction error method.

The input-output data are contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. nn
is given as

nn = [nb nf nk]

where nb and nf are the orders of the output-error model, and nk is the
delay. Specifically,

See “What Are Black-Box Polynomial Models?” for more information.

Only single-input, single-output models are handled by roe. Use rpem
for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following
order.

thm(k,:) = [b1,...,bnb,f1,...,fnf]

2-365

roe

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adg and adm.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to roe with the same model orders. (This call could
be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also “Algorithms for Recursive Estimation”.

See Also nkshift

rarmax

rarx

rbj

rpem

rplr

2-366

rpem

Purpose Estimate general input-output models using recursive prediction-error
minimization method

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. (In
the multiple-input case, u contains one column for each input.) nn
is given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is
the delay. For multiple-input systems, nb, nf, and nk are row vectors
giving the orders and delays of each input. See “What Are Black-Box
Polynomial Models?” for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
c1,...,cnc,d1,...,dnd,f1,...,fnf]

For multiple-input systems, the B part in the above expression is
repeated for each input before the C part begins, and the F part is also
repeated for each input. This is the same ordering as in m.par.

2-367

rpem

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adg and adm.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively,
of the scaled covariance matrix of the parameters. See rarx. The
default value of P0 is 104 times the unit matrix. The arguments phi0,
psi0, phi, and psi contain initial and final values of the data vector
and the gradient vector, respectively. The sizes of these depend on the
chosen model orders. The normal choice of phi0 and psi0 is to use the
outputs from a previous call to rpem with the same model orders. (This
call could be a dummy call with default input arguments.) The default
values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also “Algorithms for Recursive Estimation”.

For the special cases of ARX/AR models, and of single-input
ARMAX/ARMA, Box-Jenkins, and output-error models, it is more
efficient to use rarx, rarmax, rbj, and roe.

See Also nkshift

rarmax

rarx

rbj

2-368

rpem

roe

rplr

2-369

rplr

Purpose Estimate general input-output models using recursive pseudolinear
regression method

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax.
See rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation.
See Section 11.5 in Ljung (1999). Several of the special cases are
well-known algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr
gives the extended least squares (ELS) method. When applied to the
output-error structure (nn = [0 nb 0 0 nf nk]), the method is known
as HARF in the adm = 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time-series case in which an ARMA
model is estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

References For more information about HARF and SHARF, see Chapter 11 in
Ljung (1999).

See Also nkshift

rarmax

rarx

rbj

roe

rpem

2-370

saturation

Purpose Class representing saturation nonlinearity estimator for
Hammerstein-Wiener models

Syntax s=saturation(LinearInterval,L)

Description saturation is an object that stores the saturation nonlinearity
estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=saturation(LinearInterval,L) creates a saturation nonlinearity
estimator object, initialized with the linear interval L.

Use evaluate(s,x) to compute the value of the function defined by the
saturation object s at x.

Remarks Use saturation to define a nonlinear function y F x= () , where F is a
function of x and has the following characteristics:

a x b F x x
a x F x a
b x

≤ < =
> =
≤

()
()

 F x b() =

y and x are scalars.

saturation
Properties

You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List LinearInterval property value
get(s)
s.LinearInterval

You can also use the set function to set the value of particular
properties. For example:

2-371

saturation

set(s, 'LinearInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

Property Name Description

LinearInterval 1-by-2 row vector that specifies the initial interval of the
saturation.
Default=[NaN NaN].

For example:

saturation('LinearInterval',[-1.5 1.5])

Examples Use saturation to specify the saturation nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,saturation([-1 1]),[]);

The saturation nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

See Also nlhw

2-372

segment

Purpose Segment data and estimate models for each segment

Syntax segm = segment(z,nn)
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA type,

assuming that the model parameters are piecewise constant over time.
It results in a model that has split the data record into segments over
which the model remains constant. The function models signals and
systems that might undergo abrupt changes.

The input-output data is contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. If the
system has several inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials.
See “What Are Black-Box Polynomial Models?”. Moreover, nk is the
delay. If the model has several inputs, nb and nk are row vectors, giving
the orders and delays for each input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na

2-373

segment

The output argument segm is a matrix, where the kth row contains
the parameters corresponding to time k. This is analogous to the
output argument thm in rarx and rarmax. The output argument thm
of segment contains the corresponding model parameters that have
not yet been segmented. That is, they are not piecewise constant, and
therefore correspond to the outputs of the functions rarmax and rarx.
In fact, segment is an alternative to these two algorithms, and has a
better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction
errors of the segmented model. It is a measure of how successful the
segmentation has been.

The input argument R2 is the assumed variance of the innovations e(t)
in the model. The default value of R2, R2 = [], is that it is estimated.
Then the output argument R2e is a vector whose kth element contains
the estimate of R2 at time k.

The argument q is the probability that the model exhibits an abrupt
change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they
occur. The default value is the identity matrix with dimension equal to
the number of estimated parameters.

M is the number of parallel models used in the algorithm (see below).
Its default value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the
initial covariance matrix of the parameters. The default is 10 times
the identity matrix.

ll is the guaranteed life of each of the models. That is, any created
candidate model is not abolished until after at least ll time steps. The
default is ll = 1. Mu is a forgetting parameter that is used in the
scheme that estimates R2. The default is 0.97.

The most critical parameter for you to choose is R2. It is usually more
robust to have a reasonable guess of R2 than to estimate it. Typically,
you need to try different values of R2 and evaluate the results. (See the
example below.) sqrt(R2) corresponds to a change in the value y(t)

2-374

segment

that is normal, giving no indication that the system or the input might
have changed.

Algorithm The algorithm is based on M parallel models, each recursively
estimated by an algorithm of Kalman filter type. Each model is
updated independently, and its posterior probability is computed.
The time-varying estimate thm is formed by weighting together the
M different models with weights equal to their posterior probability.
At each time step the model (among those that have lived at least ll
samples) that has the lowest posterior probability is abolished. A new
model is started, assuming that the system parameters have changed,
with probability q, a random jump from the most likely among the
models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest
posterior probability is tracked back and the time instances where it
jumped are marked. This defines the different segments of the data. (If
no models had been abolished in the algorithm, this would have been the
maximum likelihood estimates of the jump instances.) The segmented
model segm is then formed by smoothing the parameter estimate,
assuming that the jump instances are correct. In other words, the last
estimate over a segment is chosen to represent the whole segment.

Examples Check how the algorithm segments a sinusoid into segments of constant
levels. Then use a very simple model y(t) = b1 * 1, where 1 is a fake
input and describes the piecewise constant level of the signal y(t)
(which is simulated as a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(length(y),1)],[0 1 1],0.1);
plot([thm,y])

By trying various values of R2 (0.1 in the above example), more levels
are created as R2 decreases.

2-375

selstruc

Purpose Select model order for single-output ARX models

Syntax nn = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description
Note Use selstruc for single-output systems only. selstruc supports
both single-input and multiple-input systems.

selstruc is a function to help choose a model structure (order) from
the information contained in the matrix v obtained as the output from
arxstruc or ivstruc.

The default value of c is 'plot'. The plot shows the percentage of
the output variance that is not explained by the model as a function
of the number of parameters used. Each value shows the best fit for
that number of parameters. By clicking in the plot you can examine
which orders are of interest. When you click Select, the variable nn
is exported to the workspace as the optimal model structure for your
choice of number of parameters. Several choices can be made.

c = 'aic' gives no plots, but returns in nn the structure that minimizes
Akaike’s Information Criterion (AIC),

where V is the loss function, d is the total number of parameters in the
structure in question, and N is the number of data points used for the
estimation. See aic for more details.

c = 'mdl' returns in nn the structure that minimizes Rissanen’s
Minimum Description Length (MDL) criterion.

When c equals a numerical value, the structure that minimizes

2-376

selstruc

is selected.

The output argument vmod has the same format as v, but it contains the
logarithms of the accordingly modified criteria.

Examples V = arxstruc(data(1:200),data(201:400),...
struc(1:10,1:10,1:10))

nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)

2-377

set

Purpose Set properties of data and model objects

Syntax set(m,'Property',Value)
set(m,'Property1',Value1,...'PropertyN',ValueN)
set(m,'Property')
set(m)

Description set is used to set or modify the properties of any of the objects in the
toolbox (iddata, idmodel, idgrey, idarx, idpoly, idss, idnlarx,
idnlgrey, idnlhw). See the corresponding reference pages for a
complete list of properties.

set(m,'Property',Value) assigns the value Value to the property
of the object m specified by the string 'Property'. This string can be
the full property name (for example, 'SSParameterization') or any
unambiguous case-insensitive abbreviation (for example, 'ss').

set(m,'Property1',Value1,...'PropertyN',ValueN) sets multiple
properties with a single statement. In certain cases this might be
necessary, since the model m must, for example, have state-space
matrices of consistent dimensions after each set statement.

set(m,'Property') displays admissible values for the property
specified by 'Property'.

set(m) displays all assignable values of m and their admissible values.

The same result is also obtained by subassignment.

m.Property = Value

2-378

setinit

Purpose Set initial states of idnlgrey model object

Syntax setinit(model,property,values)

Input model
Name of the idnlgrey model object.

property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

values
Values of the specified property Property. values are an Nx-by-1
cell array of values, where Nx is the number of states.

Description setinit(model,property,values) sets the values of the property
field of the InitialStates model property. property can be 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

See Also getinit

getpar

idnlgrey

setpar

2-379

setpar

Purpose Set initial parameter values of idnlgrey model object

Syntax setpar(model,property,values)

Input model
Name of the idnlgrey model object.

property
Name of the Parameters model property field, such as 'Name',
'Unit', 'Value', 'Minimum', or 'Maximum'.

Default: 'Value'.

values
Values of the specified property Property. values are an Np-by-1
cell array of values, where Np is the number of parameters.

Description setpar(model,property,values) sets the model parameter values in
the property field of the Parameters model property. property can be
'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

See Also getinit

getpar

idnlgrey

setinit

2-380

setpname

Purpose Set mnemonic parameter names for linear black-box model structures

Syntax model = setpname(model)

Description model is an idmodel object of idarx, idpoly, idproc, or idss type.
The returned model has the 'PName' property set to a cell array of
strings that correspond to the symbols used in this manual to describe
the parameters.

For single-input idpoly models, the parameters are called
'a1', 'a2', ...,'fn'.

For multiple-input idpoly models, the b and f parameters have
the output/input channel number in parentheses, as in 'b1(1,2)',
'f3(1,2)', etc.

For idarx models, the parameter names are as in '-A(ky,ku)' for the
negative value of the ky-ku entry of the matrix in A(q) polynomial of the
multiple-output ARX equation, and similarly for the B parameters.

For idss models, the parameters are named for the matrix entries they
represent, such as 'A(4,5)', 'K(2,3)', etc.

For idproc models, the parameter names are as described under
idproc.

This function is particularly useful when certain parameters are to be
fixed. See the property FixedParameter under Algorithm Properties.

2-381

setstruc

Purpose Set matrix structure for idss model objects

Syntax setstruc(M,As,Bs,Cs,Ds.Ks,X0s)
setstruc(M,Mods)

Description setstruc(M,As,Bs,Cs,Ds.Ks,X0s)

is the same as

set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s)

Use empty matrices for structure matrices that should not be changed.
You can omit trailing arguments.

In the alternative syntax, Mods is a structure with field names As, Bs,
etc., with the corresponding values of the fields.

See Also idss

2-382

sigmoidnet

Purpose Class representing sigmoid network nonlinearity estimator for
nonlinear ARX and Hammerstein-Wiener models

Syntax s=sigmoidnet('NumberOfUnits',N)
s=sigmoidnet(Property1,Value1,...PropertyN,ValueN)

Description sigmoidnet is an object that stores the sigmoid network nonlinear
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

s=sigmoidnet('NumberOfUnits',N) creates a sigmoid nonlinearity
estimator object with N terms in the sigmoid expansion.

s=sigmoidnet(Property1,Value1,...PropertyN,ValueN) creates
a sigmoid nonlinearity estimator object specified by properties in
“sigmoidnet Properties” on page 2-384.

Use evaluate(s,x) to compute the value of the function defined by the
sigmoidnet object s at x.

Remarks Use sigmoidnet to define a nonlinear function y F x= () , where y is
scalar and x is an m-dimensional row vector. The sigmoid network
function is based on the following expansion:

F x x r PL a f x r Qb c() ()= − + −() −() +

+
1 1 1 …

 aa f x r Qb c dn n n−() −() +

where f is the sigmoid function, given by the following equation:

f z
e z

() =
+−

1

1

P and Q are m-by-p and m-by-q projection matrices. The projection
matrices P and Q are determined by principal component analysis of
estimation data. Usually, p=m. If the components of x in the estimation
data are linearly dependent, then p<m. The number of columns of Q,

2-383

sigmoidnet

q, corresponds to the number of components of x used in the sigmoid
function.

When used in a nonlinear ARX model, q is equal to the size of the
NonlinearRegressors property of the idnlarx object. When used in a
Hammerstein-Wiener model, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, ak, and ck are scalars.

L is a p-by-1 vector.

bk are q-by-1 vectors.

sigmoidnet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(s)
% Get value of NumberOfUnits property
s.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

set(s, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.

2-384

sigmoidnet

Property Name Description

NumberOfUnits Integer specifies the number of nonlinearity units in the
expansion.
Default=10.

For example:

sigmoidnet(H,'NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'—Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero.

For example:

sigmoidnet(H,'LinearTerm','on')

Parameters A structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• Dilation: q-by-n matrix containing the values b_k.

• Translation: 1-by-n vector containing the values c_k.

• OutputCoef: n-by-1 vector containing the values a_k.

• OutputOffset: scalar d.

Typically, the values of this structure are set by estimating a
model with a sigmoidnet nonlinearity.

2-385

sigmoidnet

Algorithm sigmoidnet uses an iterative search technique for estimating
parameters.

Examples Use sigmoidnet to specify the nonlinear estimator in nonlinear ARX
and Hammerstein-Wiener models. For example:

m=nlarx(Data,Orders,sigmoidnet('num',5));

See Also nlarx

nlhw

2-386

sim

Purpose Simulate linear models with confidence interval

Syntax y = sim(m,u)
y = sim(m,u,'noise')
[y, ysd] = sim(m,u,'InitialState',init)

Description m is any idmodel.

u is an iddata object, containing inputs only. (Any outputs are ignored).
Both time-domain and frequency-domain signals are supported. The
number of input channels in u must either be equal to the number
of inputs of the model m or equal to the sum of the number of inputs
and noise sources (number of outputs). In the latter case the last
inputs in u are regarded as noise sources and a noise-corrupted
simulation is obtained. The noise is scaled according to the property
m.NoiseVariance in m. To obtain the right noise level according to the
model, the noise inputs should be white noise with zero mean and
unit covariance matrix. A simpler way of obtaining a noise-corrupted
simulation with Gaussian noise is to add the argument 'noise'. If no
noise sources are contained in u, a noise-free simulation is obtained.
sim applies both to time-domain and frequency-domain iddata objects,
but no standard deviations are obtained for frequency-domain signals.

sim returns y, containing the simulated output, as an iddata object.

init gives access to the initial states:

• init = 'm' (default) uses the internally stored initial state of model
m.

• init = 'z' uses zero initial state.

• init = x0, where x0 is a column vector of appropriate length, uses
this value as the initial state. For multi-experiment inputs, x0 has as
many columns as there are experiments to allow for different initial
conditions. For a continuous-time model m, x0 is the initial state for
this model. Any modifications of the initial state that sampling might
require are automatically handled. If m has a non-zero InputDelay,

2-387

sim

and you need to access the values of the inputs during this delay, you
must first apply inpd2nk(m). If m is a continuous-time model, it must
first be sampled before inpd2nk can be applied.

The second output argument ysd is the standard deviation of the
simulated output. This is not available for frequency-domain data.

u can also be given as a matrix with the number of columns being
either the number of inputs in m or the sum of the number of inputs and
outputs. Then y and ysd are returned as matrices. Continuous-time
models, however, require u to be given as iddata.

If m is a continuous-time model, it is first converted to discrete time with
the sampling interval given by ue, taking into account the inter-sample
behavior of the input (ue.InterSample).

Examples Simulate a given system m0 (for example, created by idpoly).

e = iddata([],randn(500,1));
u = iddata([],idinput(500,'prbs'));
y = sim(m0,[u e]);
% iddata object with output y and input u.
z = [y u];

The same result is obtained by

u = iddata([],idinput(500,'prbs'));
y = sim(m0,u,'noise');
z = [y u];

or

u = idinput(500,'prbs');
y = sim(m0,u,'noise');
z = iddata(y,u);

Validate a model by comparing a measured output y with one simulated
using an estimated model m.

2-388

sim

yh = sim(m,u);
plot(y,yh)

See Also compare

idmdlsim

pe

predict

simsd

2-389

sim(idnlarx)

Purpose Simulate nonlinear ARX model

Syntax YS = sim(MODEL,U)
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)

Description YS = sim(MODEL,U) simulates a dynamic system with an idnlarx
model.

YS = sim(MODEL,U,'Noise') produces a noise corrupted simulation
with an additive Gaussian noise scaled according to the value of the
NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState',INIT) specifies the initial
conditions for simulation using various options, such as numerical
initial state vector or past I/O data.

To simulate the model with user-defined noise, set the input U = [UIN
E], where UIN is the input signal and E is the noise signal. UIN and E
must both be one of the following:

• iddata objects: E stores the noise signals as inputs, where the
number of inputs matches the number of model outputs.

• Matrices: E has as many columns as there are noise signals,
corresponding to the number of model outputs.

Input • MODEL: idnlarx model object.

• U: Input data for simulation, an iddata object (where only the input
channels are used) or a matrix. For simulations with noisy data, U
contains both input and noise channels.

• INIT: Initial condition specification. INIT can be one of the following:

- A real column vector X0, for the state vector corresponding to
an appropriate number of output and input data samples prior
to the simulation start time. To build an initial state vector
from a given set of input-output data or to generate equilibrium
states, see data2state(idnlarx), findstates(idnlarx) and

2-390

sim(idnlarx)

findop(idnlarx). For multi-experiment data, X0 may be a
matrix whose columns give different initial states for different
experiments.

- 'z': (Default) Zero initial state, equivalent to a zero vector of
appropriate size.

- iddata object containing output and input data samples
prior to the simulation start time. If it contains more
data samples than necessary, only the last samples
are taken into account. This syntax is equivalent to
sim(MODEL,U,'InitialState',data2state(MODEL,INIT)),
where data2state(idnlarx) transforms the iddata object INIT
to a state vector.

Output • YS: Simulated output. An iddata object if U is an iddata object,
a matrix otherwise.

Note If sim is called without an output argument, MATLAB software
displays the simulated output(s) in a plot window.

Examples Simulation of a SISO idnlarx model

In this example you simulate a single-input single-output idnlarx
model M around a known equilibrium point, with an input level of 1
and output level of 10.

1 Load the sample data.

load iddata2;

2 Estimate an idnlarx model from the data.

M = nlarx(z2, [2 2 1], 'tree');

3 Estimate current states of model based on past data.

2-391

sim(idnlarx)

x0 = data2state(M, struct('Input',1, 'Output', 10));

4 Simulate the model using the initial states returned by data2state.

sim(M, z2, 'init', x0);

Continuing from End of Previous Simulation

In this example you continue the simulation of a model from the end of
a previous simulation run.

1 Estimate the idnlarx model from data.

load iddata2
M = nlarx(z2, [2 2 1], 'tree'); % idnlarx model

2 Simulate the model using first half of input data of z2

u1 = z2(1:200,[]);
% Simulate starting from zero initial states
ys1 = sim(M, u1, 'init', 'z');

3 Start another simulation, using the same states of the model from
when the first simulation ended. For the second simulation, you use
the second half of the input data of z2.

u2 = z2(201:end, []);

4 In order to set the initial states for second simulation correctly,
package input u1 and output ys1 from the first simulation into one
iddata object.

firstSimData = [ys1,u1];

5 Pass this data as initial conditions for the next simulation.

ys2 = sim(M, u2, 'init', firstSimData);

6 Verify the two simulations by comparing to a complete simulation
using all the input data of z2.

2-392

sim(idnlarx)

uTotal = z2(:,[]); % extract the whole input data
ysTotal = sim(M, uTotal, 'init', 'z');

% Compare the values of ys1, ys2 and ysTotal.
% ys1 should be equal to first half of ysTotal.
% ys2 should be equal to the second half of ysTotal
%
% plot the three responses
plot(ys1,'b', ys2, 'g', ysTotal, 'k*')

MATLAB software responds with a plot showing the three responses,
with ysTotal overlaying ys1 and ys2 to verify that they match.

Matching Model Response to Output Data

In this example, you estimate initial states of model M such that the
response best matches the output in data set z2.

1 Load the sample data and create data object z2.

load iddata2;
z2 = z2(1:50);

2 Estimate idnlarx model from data.

2-393

sim(idnlarx)

M = nlarx(z2,[4 3 2],'wave');

3 Estimate initial states of M to best fit z2.y in the simulated response.

x0 = findstates(M,z2,[],'sim');

4 Simulate the model.

ysim = sim(M, z2.u, 'init', x0)

5 Compare ysim with the output signal in z2:

time = z2.SamplingInstants;
plot(time, ysim, time, z2.y,'.')

Simulation Near Steady State with Known Input and
Unknown Output

In this example you start simulation of a model near steady state,
where the input is known to be 1, but the output is unknown.

• Load sample data and create data object z2.

load iddata2
z2 = z2(1:50);

• Estimate idnlarx model from data.

M = nlarx(z2, [4 3 2], 'wave');

• Determine equilibrium state values for input 1 and the unknown
target output.

x0 = findop(M, 'steady', 1, NaN);

• Simulate the model using initial states x0.

sim(M, z2.u, 'init', x0)

2-394

sim(idnlarx)

See Also predict(idnlarx)

findop(idnlarx)

data2state(idnlarx)

finstates(idnlarx)

2-395

sim(idnlgrey)

Purpose Simulate nonlinear ODE model

Syntax YS = sim(NLSYS,DATA)
YS = sim(NLSYS,DATA,'Noise');
YS = sim(NLSYS,DATA,X0INIT);
YS = sim(NLSYS,DATA,'Noise',XOINIT);
YS = sim(NLSYS,DATA,'Noise','InitialState',X0INIT);
[YS, YSD, XFINAL] = sim(NLSYS,DATA,'Noise','InitialState',

X0INIT);

Description YS = sim(NLSYS,DATA) simulates the output of an idnlgrey model.

YS = sim(NLSYS,DATA,'Noise'); simulates the model with Gaussian
noise added to YS.

YS = sim(NLSYS,DATA,X0INIT); simulates the model with the
specified initial states.

YS = sim(NLSYS,DATA,'Noise',XOINIT); simulates the model with
the specified initial states and with Gaussian noise added.

YS = sim(NLSYS,DATA,'Noise','InitialState',X0INIT);
simulates the model with the specified initial states.

[YS, YSD, XFINAL] =
sim(NLSYS,DATA,'Noise','InitialState',X0INIT); performs
simulation starting with the specified initial states and with
Gaussian noise added, and returns the final states of the model
after the simulation is completed.

To simulate the model with user-defined noise, set the input DATA =
[UIN E], where UIN is the input signal and E is the noise signal. UIN
and E must both be one of the following:

• iddata objects: E stores the noise signals as inputs, where the
number of inputs matches the number of model outputs.

• Matrices: E has as many columns as there are noise signals,
corresponding to the number of model outputs.

2-396

sim(idnlgrey)

Input

• NLSYS: idnlgrey model object.

• DATA: Input-noise data [U E]. If E is omitted and 'Noise' is not given
as an input argument, then a noise-free simulation is obtained. If E is
omitted and 'Noise' is given as an input argument, then Gaussian
noise created by randn(size(YS))*sqrtm(NLSYS.NoiseVariance)
will be added to YS. If both E and 'Noise' are given, then E specifies
the noise to add to YS. For time-continuous idnlgrey objects, DATA
passed as a matrix will lead to that the data sample interval, Ts, is
set to one.

• X0INIT: Initial states. Can have the following values:

- 'zero' : Zero initial state x(0) with all states fixed
(nlsys.InitialStates.Fixed is thus ignored).

- 'fixed' (default): Struct array (NLSYS.InitialState) determines
the values of the model initial states and all states are fixed.
(NLSYS.InitialStates.Fixed is ignored). Same as 'model'.

- vector/matrix: Column vector of initial state values. For multiple
experiment DATA, X0INIT may be a matrix whose columns give
different initial states for each experiment. All initial states are
kept fixed (nlsys.InitialStates.Fixed is thus ignored).

- struct array : Nx-by-1 structure array with fields:

• Name: Name of the state (a string).

• Unit: Unit of the state (a string).

• Value: Value of the states (a finite real 1-by-Ne vector, where Ne
is the number of experiments.)

• Minimum: Minimum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
minimum value).

2-397

sim(idnlgrey)

• Maximum: Maximum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
maximum value).

• Fixed: True (or a 1-by-Ne vector of True values). Any false
value is ignored.

Output • YS: Simulated output. If DATA is an iddata object, then YS will
also be an iddata object. Otherwise, YS will be a matrix where
the k:th output is found in the k:th column of YS. If DATA is a
multiple-experiment iddata object, then YS will be a multiple
experiment object as well.

• YSD: Empty vector ([].) In the future, it will contain the estimated
standard deviation of the simulated output.

• XFINAL: Final states computed. In the single experiment case it is a
column vector of length Nx. For multi-experiment data, XFINAL is an
Nx-by-Ne matrix with the ith column specifying the initial state of
experiment i.

Note If sim is called without an output argument, MATLAB software
displays the simulated output(s) in a plot window.

Examples In this example you simulate an idnlgrey model for a data set z. This
example uses the nlgr model created in idnlgreydemo2.

1 Load the data set and create an idnlgrey model.

load twotankdata;

2 Estimate the idnlgrey model.

% Specify file.
FileName = 'twotanks_c';

2-398

sim(idnlgrey)

% Specify model orders [ny nu nx].
Order = [1 1 2];
% Specify initial parameters.
Parameters = {0.5; 0.0035; 0.019; ...

9.81; 0.25; 0.016};
% Specify initial states.
InitialStates = [0; 0.1];
Ts = 0;
nlgr = idnlgrey(FileName, Order, Parameters, ...

InitialStates, Ts, ...
'Name', 'Two tanks');

3 Create an iddata object z from data z (from twotankdata.mat).

z = iddata([], u, 0.2, 'Name', 'Two tanks');

4 Simulate the model using the input signal from the data z.

sim(nlgr,z)

See Also findstates(idnlgrey)

pe

pem

predict(idnlgrey)

2-399

sim(idnlhw)

Purpose Simulate Hammerstein-Wiener model

Syntax YS = sim(MODEL,U)
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)

Description YS = sim(MODEL,U) simulates the output of an idnlhw model.

YS = sim(MODEL,U,'Noise') simulates the model output with
an additive Gaussian noise scaled according to the value of the
NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState',INIT) specifies initial conditions
for starting the simulation.

To simulate the model with user-defined noise, set the input U = [UIN
E], where UIN is the input signal and E is the noise signal. UIN and E
must both be one of the following:

• iddata objects: E stores the noise signals as inputs, where the
number of inputs matches the number of model outputs.

• Matrices: E has as many columns as there are noise signals,
corresponding to the number of model outputs.

Input • MODEL: idnlhw model object.

• U: Input data for simulation, which is an iddata object (where only
the input channels are used) or a matrix. For simulations with noisy
data, U contains both input and noise channels.

• INIT: Initial condition for simulation. INIT has one of the following
values:

- Vector of initial state values. To estimate an initial state vector
from input-output data or to generate equilibrium states, see the
findstates(idnlhw) and findop(idnlhw) reference pages. For
multiple-experiment data, enter a matrix with the same number
of columns as the number of experiments.

2-400

sim(idnlhw)

- 'z': (Default) Vector containing zeros and corresponding to a
system starting from rest.

Output • YS: Simulated output, which is an iddata object when U is an iddata
object, or a matrix otherwise.

Note If sim is called without an output argument, MATLAB software
displays the simulated output(s) in a plot window.

Examples Simulation Using Initial States to Best Fit Model Response to
Measured Output

In this example you simulate the model output using initial states that
minimize the error between the simulated and the measured output.
z2 is the measured data.

1 Load the sample data.

load iddata2

2 Create a Hammerstein-Wiener model.

M = nlhw(z2,[4 3 2],'wave','pwl');

3 Compute the initial states that best fit the model response to the
measured output.

x0 = findstates(M,z2);

4 Simulate the model using the estimated initial states.

ysim = sim(M,z2.u,'init',x0)

5 Compare ysim to output signal in z2:

t = z2.samp;

2-401

sim(idnlhw)

plot(t, ysim, t, z2.y)

Simulating a Hammerstein-Wiener Model at Steady-State
with Known Input and Unknown Output

In this example, you simulate a single-input single-output idnlhw
model about a steady-state operating point, where the input level is
known to be 1 and the output level is unknown.

1 Load the sample data.

load iddata2

2 Create a Hammerstein-Weiner model.

M = nlhw(z2,[4 3 2],'wave','pwl');

3 Compute steady-state operating point values corresponding to an
input level of 1 and an unknown output level.

x0 = findop(M,'steady',1,NaN);

4 Simulate the model using the estimated initial states.

sim(M,z2.u,'init',x0)

See Also findop(idnlhw)

finstates(idnlhw)

predict(idnlhw)

2-402

simsd

Purpose Simulate models with uncertainty using Monte Carlo method

Syntax simsd(m,u)
simsd(m,u,N,'noise',Ky)
[y,ysd] = simsd(m,u)

Description u is an iddata object containing the inputs. m is a model given as
any idmodel object. N random models are created according to the
covariance information given in m. The responses of each of these
models to the input u are computed and graphed in the same diagram.
If the argument 'noise' is included, noise is added to the simulation
in accordance with the noise model of m and its own uncertainty. Ky
denotes the output numbers to be plotted. (The default is all).

The default value is N=10.

With output arguments

[y,ysd] = simsd(m,u)

No plots are produced, but y is returned as a cell array with the
simulated outputs, and ysd is the estimated standard deviation of y,
based on the N different simulations. If u is an iddata object, so are
the contents of the cells of y and ysd; otherwise, they are returned as
vectors/matrices. In the iddata case,

plot(y{:})

thus plots all the responses.

sim and simsd have similar syntaxes. Note that simsd computes
the standard deviation by Monte Carlo simulation, while sim uses
differential approximations (the Gauss approximation formula). They
might give different results.

Examples Plot the step response of the model m and evaluate how it varies in view
of the model’s uncertainty.

step1 = [zeros(5,1); ones(20,1)];

2-403

simsd

simsd(m,step1)

See Also compare

idmdlsim

pe

predict

sim

2-404

size

Purpose Dimensions of data and model objects

Syntax d = size(m)
[ny,nu,Npar,Nx] = size(model)
[N, ny, nu, Nexp] = size(data)
ny = size(data,2)
ny = size(data,'ny')
size(model)
size(idfrd_object)

Description size describes the dimensions of iddata, idmodel, idnlmodel, and
idfrd objects.

iddata

For iddata objects, the sizes returned are, in this order,

• N = the length of the data record. For multiple-experiment data, N is
a row vector with as many entries as there are experiments.

• ny = the number of output channels.

• ny = the number of input channels.

• Ne = the number of experiments.

To access a specific size output, use syntax similar to the following:
size(data,k) for the k size(data,'N'),size(data,'ny').

When called with one output argument, d = size(data) returns

• d = [N ny nu] if the number of experiments is 1.

• d = [sum(N) ny nu Ne] if the number of experiments is Ne > 1.

idmodel

For idmodel objects the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

2-405

size

• Npar = the length of the ParameterVector (number of estimated
parameters).

• Nx = the number of states for idss and idgrey models.

To access a specific size output, use syntax similar to the following:
size(mod,2), size(mod,'Npar').

When size is called with one output argument, d = size(mod), d is
given by

[ny nu Npar]

idfrd

For idfrd models, the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

• Nf = the number of frequencies.

• Ns = the number of spectrum channels.

To access a specific size output, use syntax similar to the following:
size(mod,2) or size(mod,'Nf').

When size is called with one output argument, d = size(fre), d is
given by

[ny nu Nf Ns]

When size is called with no output arguments, in any of these cases,
the information is displayed in the MATLAB Command Window.

idnlarx or idnlhw

For idmodel objects the sizes returned are, in this order,

• ny = the number of output channels.

2-406

size

• nu = the number of input channels.

To access a specific size output, use one of the following:

NY = SIZE(NLSYS,1)
NU = SIZE(NLSYS,2)
NY = SIZE(NLSYS,'Ny')
NU = SIZE(NLSYS,'Nu')

When called with only one output argument, N = SIZE(NLSYS) returns
the vector N = [NY NU].

When called with no output argument, the information is displayed in
the MATLAB Command Window.

idnlgrey

For idnlgrey objects the sizes returned are, in this order,

• Ny = the number of output channels.

• Nu = the number of input channels.

• Nx = the number of states.

• Np = the number of parameters.

• Npo = the number of parameter variables (number of estimated
parameters).

• Npf = the number of fixed parameters.

• Ne = the number of experiments associated with the states.

Ny, Nu, Nx, Np,Npo, Npf and Ne are set to NaN if NLSYS is inconsistent.

To access a specific size output, use one of the following:

NY = SIZE(NLSYS, 1)
NU = SIZE(NLSYS, 2)
NX = SIZE(NLSYS, 3)
NP = SIZE(NLSYS, 4)
NPO = size(NLSYS, 5)

2-407

size

NPF = (NLSYS, 6)
NE = (NLSYS, 7)
NY = SIZE(NLSYS, 'Ny')
NU = SIZE(NLSYS, 'Nu')

When called with only one output argument, N = SIZE(NLSYS) returns
the vector N = [NY NU NP NX NPO NPF NE].

When called with no output argument, the information is displayed in
the MATLAB Command Window.

2-408

spa

Purpose Estimate frequency response with fixed frequency resolution using
spectral analysis

Syntax G = spa(data)
G = spa(data,winSize,freq)
G = spa(data,winSize,freq,MaxSize)
[G,phi,spectrum] = spa(data)

Description G = spa(data) estimates frequency response (with uncertainty) and
noise spectrum from time- or frequency-domain data. data is an iddata
or idfrd object and can be complex valued. G is as an idfrd object. For
time-series data, G is the estimated spectrum and standard deviation.

G = spa(data,winSize,freq) estimates frequency response at
frequencies freq. freq is a row vector of values in rad/sec. winSize is a
scalar integer that sets the size of the Hann window.

G = spa(data,winSize,freq,MaxSize) can improve computational
performance using MaxSize to split the input-output data such that
each segment contains fewer than MaxSize elements. MaxSize is a
positive integer.

[G,phi,spectrum] = spa(data) estimates phi, which is the output
disturbance and its uncertainty, and spetrum, which is the
spectrum matrix for both the output and the input channels. For
example, if z = [data.OutputData, data.InputData], spe contains the
power spectrum estimate of z. G, phi, and spectrum are idfrd objects.

Definitions Frequency Response Function

Frequency response function describes the steady-state response of a
system to sinusoidal inputs. For a linear system, a sinusoidal input of
a specific frequency results in an output that is also a sinusoid with
the same frequency, but with a different amplitude and phase. The
frequency response function describes the amplitude change and phase
shift as a function of frequency.

To better understand the frequency response function, consider the
following description of a linear, dynamic system:

2-409

spa

y t G q u t v t() () () ()= +

where u(t) and y(t) are the input and output signals, respectively. G(q)
is called the transfer function of the system—it captures the system
dynamics that take the input to the output. The notation G(q)u(t)
represents the following operation:

G q u t g k u t k
k

() () () ()= −
=

∞

∑
1

q is the shift operator, defined by the following equation:

G q g k q q u t u tk

k

() () () ()= = −−

=

∞
−∑

1

1 1

G(q) is the frequency-response function, which is evaluated on the unit
circle, G(q=eiw).

Together, G(q=eiw) and the output noise spectrum ˆ ()Φv ω are the
frequency-domain description of the system.

The frequency-response function estimated using the Blackman-Tukey
approach is given by the following equation:

ˆ
ˆ

ˆG eN
i yu

u

ω ω

ω() =
()

()
Φ

Φ

In this case, ^ represents approximate quantities. For a derivation
of this equation, see the chapter on nonparametric time- and
frequency-domain methods in System Identification: Theory for the
User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Output Noise Spectrum

The output noise spectrum (spectrum of v(t)) is given by the following
equation:

2-410

spa

ˆ ˆ
ˆ

ˆΦ Φ
Φ

Φv y
yu

u
ω ω

ω

ω
() = () −

()
()

2

This equation for the noise spectrum is derived by assuming the linear

relationship y t G q u t v t() () () ()= + , that u(t) is independent of v(t), and
the following relationships between the spectra:

Φ Φ Φy
i

u vG e() () ()ω ω ωω= () +
2

Φ Φyu
i

uG e() ()ω ωω= ()
where the noise spectrum is given by the following equation:

Φv v
iwR e() ()ω τ

τ

τ≡
=−∞

∞
−∑

ˆ ()Φ yu ω is the output-input cross-spectrum and
ˆ ()Φu ω is the input

spectrum.

Alternatively, the disturbance v(t) can be described as filtered white
noise:

v t H q e t() () ()=

where e(t) is the white noise with variance λ and the noise power
spectrum is given by the following equation:

Φv
iH e()ω λ ω= () 2

Examples Estimate frequency response with fixed resolution at 128 equally
spaced, logarithmic frequency values between 0 (excluded) and π:

2-411

spa

g = spa(z); % z is an iddata object with Ts=1
bode(g)

Estimate frequency response with fixed resolution at logarithmically
spaced frequencies:

% Define frequency vector
w = logspace(-2,pi,128);
% Compute frequency response
g= spa(z,[],w); % [] specifies the default lag window size
bode(g,'sd',3) % Bode plot of the transfer function
bode(g('noise'),'sd',3) % Noise spectrum
% Bode plots include confidence interval
% of 3 standard deviations

Algorithm spa applies the Blackman-Tukey spectral analysis method by following
these steps:

1 Computes the covariances and cross-covariance from u(t) and y(t):

ˆ

ˆ

ˆ

R y t y t

R u t u t

R

y N
t

N

u N
t

N

yu N

τ τ

τ τ

τ

() = +() ()

() = +() ()

() =

=

=

∑

∑

1

1

1

1

1 yy t u t
t

N
+() ()

=
∑ τ

1

This portion of the algorithm uses the covf function.

2-412

spa

2 Computes the Fourier transforms of the covariances and the
cross-covariance:

ˆ () ˆ () ()

ˆ () ˆ () ()

Φ

Φ

y y
M

M

M
i

u u
M

M

M
i

R W e

R W e

ω τ τ

ω τ τ

τ

ωτ

τ

ωτ

=

=

=−

−

=−

−

∑

∑

ˆ̂ () ˆ () ()Φ yu yu
M

M

M
iR W eω τ τ

τ

ωτ=
=−

−∑

where WM ()τ is the Hann window with a width (lag size) of M. You
can specify M to control the frequency resolution of the estimate,
which is approximately equal 2π/M rad/sampling interval.

By default, this operation uses 128 equally spaced frequency values
between 0 (excluded) and π, where w = [1:128]/128*pi/Ts and
Ts is the sampling interval of that data set. The default lag size of
the Hann window is M = min(length(data)/10,30). For default
frequencies, uses fast Fourier transforms (FFT)—which is more
efficient than for user-defined frequencies.

Note M =γ is in Table 6.1 of Ljung (1999). Standard deviations are
on pages 184 and 188 in Ljung (1999).

3 Compute the frequency-response function Ĝ eN
iω() and the output

noise spectrum ˆ ()Φv ω .

ˆ
ˆ

ˆG eN
i yu

u

ω ω

ω() =
()
()

Φ

Φ

2-413

spa

Φv v
iwR e() ()ω τ

τ

τ≡
=−∞

∞
−∑

spectrum is the spectrum matrix for both the output and the input
channels. That is, if z = [data.OutputData, data.InputData],
spectrum contains as spectrum data the matrix-valued power spectrum
of z.

S Ez t m z t W T i m
m M

M

M s= +() ()′ () −()
=−
∑ exp

' is a complex-conjugate transpose.

References Ljung, L. System Identification: Theory for the User, Second Ed.,
Prentice Hall PTR, 1999.

See Also etfe | freqresp | idfrd | spafdr

How To • “Identifying Frequency-Response Models”

• “Spectrum Normalization”

2-414

spafdr

Purpose Estimate frequency response and spectrum using spectral analysis with
frequency-dependent resolution

Syntax g = spafdr(data)
g = spafdr(data,Resol,w)

Description spafdr estimates the idfrd object containing transfer function and the
noise spectrum of the general linear model

where is the spectrum of .

data contains the output-input data as an iddata object. The data can
be complex valued, and either time or frequency domain. It can also be
an idfrd object containing frequency-response data.

g is returned as an idfrd object (see idfrd) with the estimate of
at the frequencies specified by row vector w. g also includes

information about the spectrum estimate of at the same
frequencies. Both results are returned with estimated covariances,
included in g. See idfrd. The normalization of the spectrum is the
same as described under spa.

Frequencies

The frequency variable w is either specified as a row vector of
frequencies, or as a cell array {wmin,wmax}. In the latter case the
covered frequencies will be 50 logarithmically spaced points from
wmin to wmax. You can change the number of points to NP by entering
{wmin,wmax,NP}.

Omitting w or entering it as an empty matrix gives the default value,
which is 100 logarithmically spaced frequencies between the smallest
and largest frequency in data. For time-domain data, this means from
1/N*Ts to pi*Ts, where Ts is the sampling interval of data and N is
the number of data.

2-415

spafdr

Resolution

The argument Resol defines the frequency resolution of the estimates.
The resolution (measured in rad/s) is the size of the smallest detail
in the frequency function and the spectrum that is resolved by the
estimate. The resolution is a tradeoff between obtaining estimates with
fine, reliable details, and suffering from spurious, random effects: The
finer the resolution, the higher the variance in the estimate. Resol
can be entered as a scalar (measured in rad/s), which defines the
resolution over the whole frequency interval. It can also be entered
as a row vector of the same length as w. Then Resol(k) is the local,
frequency-dependent resolution around frequency w(k).

The default value of Resol, obtained by omitting it or entering it as the
empty matrix, is Resol(k) = 2(w(k+1)-w(k)), adjusted upwards, so
that a reasonable estimate is guaranteed. In all cases, the resolution is
returned in the variable g.EstimationInfo.WindowSize.

Algorithm If the data is given in the time domain, it is first converted to
the frequency domain. Then averages of Y(w)Conj(U(w)) and
U(w)Conj(U(w)) are formed over the frequency ranges w, corresponding
to the desired resolution around the frequency in question. The ratio of
these averages is then formed for the frequency-function estimate, and
corresponding expressions define the noise spectrum estimate.

See Also bode

etfe

ffplot

freqresp

idfrd

nyquist

spa

2-416

ss

Purpose Convert linear models to Control System Toolbox LTI models

Syntax sys = ss(mod)
sys = ss(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.

sys is returned as an ss LTI model object. The noise input channels in
mod are treated as follows: consider a model mod with both measured
input channels u (nu channels) and noise channels e (ny channels) with
covariance matrix

Both measured input channels u and normalized noise input channels v
in mod are input channels in sys. The noise input channels belong to
the InputGroup 'Noise', while the others belong to the InputGroup
'Measured'. The names of the noise input channels are v@yname, where
yname is the name of the corresponding output channel. This means
that the LTI object realizes the transfer function [G HL].

To transform only the measured input channels in sys, use

sys = ss(mod('m')) or sys = ss(mod,'m')

This gives a representation of G only.

For a time series (no measured input channels, nu = 0), the LTI
representations in ss contains the transfer functions from the
normalized noise sources v to the outputs, that is, HL. If the model
mod has both measured and noise inputs, sys = ss(mod('n')) gives a
representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = ss(mod(1,[3 4]))

2-417

ss

If you want to describe [G H] or H (unnormalized noise), from e to
y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These
channels are assigned the names e@yname.

See Also frd

tf

zpk

2-418

ssdata

Purpose State-space matrices from parametric linear model

Syntax [A,B,C,D,K,X0] = ssdata(m)
[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = ssdata(m)

Description m is the model given as any idmodel object. A, B, C, D, K, and X0 are the
matrices in the state-space description

where is or depending on whether m is a
continuous-time or discrete-time model.

dA, dB, dC, dD, dK, and dX0 are the standard deviations of the state-space
matrices.

If the underlying model itself is a state-space model, the matrices
correspond to the same basis. If the underlying model is an input-output
model, an observer canonical form representation is obtained.

For a time-series model (no measured input channels, u = []), B and D
are returned as the empty matrices.

Subreferencing models in the usual way (see idmodel properties) will
give the state-space representation of the chosen channels. Notice in
particular that

[A,B,C,D] = ssdata(m('m'))

gives the response from the measured inputs. This is a model without a
disturbance description. Moreover,

[A,B,C,D,K] = ssdata(m('n'))

2-419

ssdata

('n' as in “noise”) gives the disturbance description, that is, a
time-series description of the additive noise with no measured inputs,
so that B = [] and D = [].

To obtain state-space descriptions that treat all input channels, both u
and e, as measured inputs, first apply the conversion

m = noisecnv(m)

or

m = noisecnv(m,'norm')

where the latter case first normalizes e to v, where v has a unit
covariance matrix. See the reference page for noisecnv.

Algorithm The computation of the standard deviations in the input-output
case assumes that an A polynomial is not used together with an
F or D polynomial in the general polynomial equation (see “What
Are Black-Box Polynomial Models?” in the User’s Guide. For the
computation of standard deviations in the case that the state-space
parameters are complicated functions of the parameters, the Gauss
approximation formula is used together with numerical derivatives.
The step sizes for this differentiation are determined by nuderst.

See Also idmodel

idss

nuderst

2-420

step

Purpose Plot step response with confidence interval

Syntax step(m)
step(data)
step(m,'sd',sd,Time)
step(data,'sd',sd,'PW',na,Time)
step(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
step(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,mN,
'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = step(m)
mod = step(data)

Description step can be applied both to any idmodel or idnlmodel object and to
iddata sets.

For a discrete-time idmodel m, the step response y and, when required,
its estimated standard deviation ysd, are computed using sim. When
called with output arguments, y, ysd, and the time vector t are
returned. When step is called without output arguments, a plot of
the step response is shown. If sd is given a value larger than zero, a
confidence region around the response is drawn. It corresponds to
the confidence of sd standard deviations. If the input argument list
contains 'fill', this region is plotted as a filled area.

Setting the Time Interval

The start time T1 and the end time T2 can be specified by Time = [T1
T2]. If T1 is not given, it is set to -T2/4. The negative time lags (the
step is always assumed to occur at time 0) show possible feedback
effects in the data when the step is estimated directly from data. If
Time is not specified, a default value is used.

Estimating the Step Response from the Data

For an iddata set data, step(data) estimates a high-order, noncausal
FIR model after first having prefiltered the data so that the input
is “as white as possible.” The step response of this FIR model and,
when asked for, its confidence region, are then plotted. Note that it
might not be possible always to deliver the demanded time interval in

2-421

step

this case, because of lack of excitation in the data. A warning is then
issued. When called with an output argument, step, in the iddata case,
returns this FIR model, stored as an idarx model. The order of the
prewhitening filter can be specified as na. The default value is na = 10.

Several Models/Data Sets

Any number and any mixture of models and data sets can be used as
input arguments. The responses are plotted with each input/output
channel (as defined by the models and data sets InputName and
OutputName) as a separate plot. Colors, line styles, and marks can be
defined by PlotStyle values, as in

step(m1,'b-*',m2,'y--',m3,'g')

Noise Channels

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance
= . The model can also be described with a unit variance, using a
normalized noise source v:

• step(m) plots the step response of the transfer function G.

• step(m('n')) plots the step response of the transfer function H (ny
inputs and ny outputs). The input channels have names e@yname,
where yname is the name of the corresponding output.

• If m is a time series, that is, nu = 0, step(m) plots the step response
of the transfer function H.

2-422

step

• step(noisecnv(m)) plots the step response of the transfer function
[G H] (nu+ny inputs and ny outputs). The noise input channels have
names e@yname, where yname is the name of the corresponding
output.

• step(noisecnv(m,'norm')) plots the step response of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input
channels have names v@yname, where yname is the name of the
corresponding output.

Arguments If step is called with a single idmodel m, the output argument y is a 3-D
array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time
vector t, ny is the number of output channels, and nu is the number of
input channels. Thus y(:,ky,ku) is the response in the kyth output
channel to a step in the kuth input channel. No plot is produced when
output arguments are used.

ysd has the same dimensions as y and contains the standard deviations
of y. This is normally computed using sim. However, when the model m
contains an estimated delay (dead time) as in certain process models,
the standard deviation is estimated with Monte Carlo techniques, using
simsd.

If step is called with an output argument and a single data set in
the input arguments, the output is returned as an idarx model mod
containing the high-order FIR model, and its uncertainty. By calling
step with mod, the responses can be displayed and returned without
your having to redo the estimation.

Examples % Estimate and plot the step response
step(data,'sd',3)
mod = step(data)
step(mod,'sd',3)

See Also cra

impulse

2-423

struc

Purpose Generate model structure matrices for single-input and single-output
systems

Syntax NN = struc(NA,NB,NK)

Description struc returns in NN the set of model structures composed of all
combinations of the orders and delays given in row vectors NA, NB,
and NK. The format of NN is consistent with the input format used by
arxstruc and ivstruc. The command is intended for single-input
systems only.

Examples The statement

NN = struc(1:2,1:2,4:5);

produces

NN =
1 1 4
1 1 5
1 2 4
1 2 5
2 1 4
2 1 5
2 2 4
2 2 5

See Also arxstruc

ivstruc

selstruc

2-424

tf

Purpose Convert linear models to transfer-function Control System Toolbox LTI
models

Syntax sys = tf(mod)
sys = tf(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.

sys is returned as a transfer function tf LTI model object. The noise
input channels in mod are treated as follows:

Consider a model mod with both measured input channels u (nu
channels) and noise channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. mod.NoiseVariance = . The
model can also be described with a unit variance, using a normalized
noise source v.

Both measured input channels u and normalized noise input channels v
in mod are input channels in sys. The noise input channels belong to
the InputGroup 'Noise', while the others belong to the InputGroup
'Measured'. The names of the noise input channels will be v@yname,
where yname is the name of the corresponding output channel. This
means that the LTI object realizes the transfer function [G HL].

To transform only the measured input channels in mod, use

sys = tf(mod('m')) or sys = tf(mod,'m')

This gives a representation of G only.

2-425

tf

For a time series, (no measured input channels, nu = 0), the LTI
representation contains the transfer functions from the normalized
noise sources v to the outputs, that is, HL. If the model mod has
both measured and noise inputs, sys = tf(mod('n')) gives a
representation of the additive noise.

In addition, you can use normal subreferencing.

sys = tf(mod(1,[3 4]))

If you want to describe [G H] or H (unnormalized noise), from e to
y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These
channels are assigned the names e@yname.

See Also frd

ss

zpk

2-426

tfdata

Purpose Numerator and denominator of transfer function from linear model

Syntax [num,den] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and
nu input channels.

num is a cell array of dimension ny-by-nu. num{ky,ku} (note the curly
braces) contains the numerator of the transfer function from input ku
to output ky. This numerator is a row vector whose interpretation is
described below.

Similarly, den is an ny-by-nu cell array of the denominators.

sdnum and sdden have the same formats as num and den. They contain
the standard deviations of the numerator and denominator coefficients.

If m is a SISO model, adding an extra input argument 'v' (for vector)
will return num and den as vectors rather than cell arrays.

The formats of num and den are the same as those used by the Signal
Processing Toolbox and Control System Toolbox products, both for
continuous-time and discrete-time models.

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance
= . The model can also be described with a unit variance, using a
normalized noise source v:

2-427

tfdata

• tfdata(m) returns the transfer function G.

• tfdata(m('n')) returns the transfer function H (ny inputs and ny
outputs).

• If m is a time series, that is, nu = 0, tfdata(m) returns the transfer
function H.

• tfdata(noisecnv(m)) returns the transfer function [G H] (nu+ny
inputs and ny outputs).

• tfdata(noisecnv(m,'norm')) returns the transfer function [G HL]
(nu+ny inputs and ny outputs).

Examples For a continuous-time model,

num = [1 2]
den = [1 3 0]

corresponds to the transfer function

For a discrete-time model,

num = [2 4 0]
den = [1 2 3 5]

corresponds to the transfer function

which is the same as

2-428

tfdata

Note that for discrete-time models, idpoly and polydata have a
different interpretation of the numerator vector, in case it does not
have the same length as the denominator vector. To avoid confusion,
fill out with zeros to make numerator and denominator vectors the
same length. Do this with tfdata.

See Also idpoly

noisecnv

2-429

timestamp

Purpose Return date and time when object was created or last modified

Syntax timestamp(obj)
ts = timestamp(obj)

Description obj is any idmodel, iddata, or idfrd object. timestamp returns or
displays a string with information about when the object was created
and last modified.

2-430

treepartition

Purpose Class representing binary-tree nonlinearity estimator for nonlinear
ARX models

Syntax t=treepartition(Property1,Value1,...PropertyN,ValueN)
t=treepartition('NumberOfUnits',N)

Description treepartition is an object that stores the binary-tree nonlinear
estimator for estimating nonlinear ARX models.

You can use the constructor to create the nonlinearity object, as follows:

t=treepartition(Property1,Value1,...PropertyN,ValueN) creates
a binary tree nonlinearity estimator object specified by properties in
“treepartition Properties” on page 2-432. The tree has the number
of leaves equal to 2^(J+1)-1, where J is the number of nodes in the
tree and set by the property NumberOfUnits. The default value of
NumberOfUnits is computed automatically.

Note NumberOfUnits sets an upper limit on the actual number of tree
nodes used by the estimator.

t=treepartition('NumberOfUnits',N) creates a binary tree
nonlinearity estimator object with N terms in the binary tree expansion
(the number of nodes in the tree). When you estimate a model
containing t, the value of the NumberOfUnits property, N, in t is
automatically changed to show the actual number of leaves used—which
is the largest integer of the form 2^n-1 and less than or equal to N.

Use evaluate(t,x) to compute the value of the function defined by
the treepartition object t at x. At this stage, an adaptive pruning
algorithm is used to select an active partition D_a(= D_a(x)) on the
branch of tree partitions that contain x.

Remarks Use treepartition to define a nonlinear function y F x= () , where
F is a piecewise-linear (affine) function of x, y is scalar, and x is a

2-431

treepartition

1-by-m vector. F is a local linear mapping, where x-space partitioning is
determined by a binary tree.

The binary-tree network function is based on the following function
expansion:

F x xL x C da() ,= + [] +1

x belongs to the active partition Da . Dk is a partition of x-space. L
is 1-by-m vector.

Ck is a 1-by-(m+1) vector.

d is a scalar.

The active partition Da is computed as an intersection of half-spaces by
a binary tree, as follows:

1 Tree with N nodes and J levels is initialized.

2 Node at level J is a terminating leaf and a node at level j<J has two
descendants at level j+1. The number of leaves in the tree is N =
2^(J+1)-1, which is determined by the NumberOfUnits property of
the treepartition object.

3 Partition at node r is based on [1,x]*B_r > 0 or <= 0 (move to left
or right descendant), where B_r is chosen to improve the stability of
least-square computation on the partitions at the descendant nodes.

4 Compute at each node r the coefficients C_r of best linear
approximation of unknown regression function on D_r using
penalized least-squares algorithm.

treepartition
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values

2-432

treepartition

get(t)
% Get value of NumberOfUnits property
t.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

set(t, 'NumberOfUnits', 5)

The first argument to set must be the name of a MATLAB variable.

Property Name Description

NumberOfUnits Integer specifies the number of nodes in the tree.
Default='auto' selects the number of nodes from the data
using the pruning algorithm.

When you estimate a model containing a treepartition
nonlinearity, the value of NumberOfUnits is automatically
changed to show the actual number of leaves used—which is
the largest integer of the form 2^n-1 and less than or equal to
N (the integer value of units you specify).

For example:

treepartition('NumberOfUnits',5)

Parameters Structure containing the following fields:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• RegressorMinMax: m-by-2 matrix containing the maximum
and minimum estimation-data regressor values.

• OutputOffset: scalar d.

• LinearCoef: m-by-1 vector L.

• SampleLength: Length of estimation data.

2-433

treepartition

Property Name Description

• NoiseVariance: Estimated variance of the noise in
estimation data.

• NonlinearParameters: A structure containing the following
tree parameters:

- TreeLevelPntr: N-by-1 vector containing the levels j of
each node.

- AncestorDescendantPntr: N-by-3 matrix, such that
the entry (k,1) is the ancestor of node k, and entries
(k,2) and (k,3) are the left and right descendants,
respectively.

- LocalizingVectors: N-by-(m+1) matrix, such that the
rth row is B_r.

- LocalParVector: N-by-(m+1) matrix, such that the kth
row is C_k.

- LocalCovMatrix: N-by-((m+1)m/2) matrix such that the
kth row is the covariance matrix of C_k. C_k is reshaped
as a row vector.

Options Structure containing the following fields that affect the initial
model:

• FinestCell: Integer or string specifying the minimum
number of data points in the smallest partition.
Default: 'auto', which computes the value from the data.

• Threshold: Threshold parameter used by the adaptive
pruning algorithm. Smaller threshold value corresponds to
a shorter branch that is terminated by the active partition
D_a. Higher threshold value results in a longer branch.
Default: 1.0.

• Stabilizer: Penalty parameter of the penalized
least-squares algorithm used to compute local parameter

2-434

treepartition

Property Name Description

vectors C_k. Higher stabilizer value improves stability, but
may deteriorate the accuracy of the least-square estimate.
Default: 1e-6.

Algorithm When the idnlarx property Focus is 'Prediction', treepartition
uses a noniterative technique for estimating parameters. Iterative
refinements are not possible for models containing this nonlinearity
estimator.

You cannot use treepartition when Focus is 'Simulation' because
this nonlinearity estimators is not differentiable. Minimization of
simulation error requires differentiable nonlinear functions.

Examples Use treepartition to specify the nonlinear estimator in nonlinear
ARX models. For example:

m=nlarx(Data,Orders,treepartition('num',5));

The following commands provide an example of using advanced
treepartition options:

% Define the treepartition object
t=treepartition('num',100);
% Set the Threshold, which is a field
% in the Options structure
t.Options.Threshold=2;
% Estimate the nonlinear ARX model
m=nlarx(Data,Orders,t);

See Also nlarx

2-435

TrendInfo

Purpose Offset and linear trend slope values for detrending data

Description TrendInfo class represents offset and linear trend information of input
and output data. Constructing the corresponding object lets you:

• Compute and store mean values or best-fit linear trends of input
and output data signals.

• Define specific offsets and trends to be removed from input-output
data.

By storing offset and trend information, you can apply it to multiple
data sets.

After estimating a linear model from detrended data, you can simulate
the model at original operation conditions by adding the saved trend to
the simulated output using retrend.

Construction For transient data, if you want to define a specific offset or trend to be
removed from this data, create the TrendInfo object using getTrend.
For example:

T=getTrend(data)

where data is the iddata object from which you will be removing the
offset or linear trend, and T is the TrendInfo object. You must then
assign specific offset and slope values as properties of this object before
passing the object as an argument to detrend.

For steady-state data, if you want to detrend the data and store the
trend information, use the detrend command with the output argument
for storing trend information.

Properties After creating the object, you can use get or dot notation to access the
object property values.

2-436

TrendInfo

Property
Name

Default Description

DataName Empty string Name of the iddata object from which trend
information is derived (if any)

InputOffset zeros(1,nu), where
nu is the number of
inputs

• For transient data, the physical equilibrium
offset you specify for each input signal.

• For steady-state data, the mean of input values.
Computed automatically when detrending the
data.

• If removing a linear trend from the input-output
data, the value of the line at t0, where t0 is the
start time.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

InputSlope zeros(1,nu), where
nu is the number of
inputs

Slope of linear trend in input data, computed
automatically when using the detrend command
to remove the linear trend in the data.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

2-437

TrendInfo

Property
Name

Default Description

OutputOffset zeros(1,ny), where
ny is the number of
outputs

• For transient data, the physical equilibrium
offset you specify for each output signal

• For steady-state data, the mean of output values.
Computed automatically when detrending the
data.

• If removing a linear trend from the intput-output
data, the value of the line at t0, where t0 is the
start time.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

OutputSlope zeros(1,ny), where
ny is the number of
outputs

Slope of linear trend in output data, computed
automatically when using the detrend command
to remove the linear trend in the data.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

Examples Construct the object that stores trend information as part of data
detrending:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Detrend the mean from the data
% Store the mean as TrendInfo object T
[data_d,T] = detrend(data,0)
% View mean value removed from the data

2-438

TrendInfo

get(T)

Construct the object that stores input and output offsets to be removed
from transient data:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% View mean value removed from the data
get(T)

See Also detrend

getTrend

retrend

“Handling Offsets and Trends in Data”

2-439

unitgain

Purpose Specify absence of nonlinearities for specific input or output channels
in Hammerstein-Wiener models

Syntax unit=unitgain

Description unit=unitgain instantiates an object that specifies an identity
mapping F(x)=x to exclude specific input and output channels from
being affected by a nonlinearity in Hammerstein-Wiener models.

Use the unitgain object as an argument in the nlhw estimator to set
the corresponding channel nonlinearity to unit gain.

For example, for a two-input and one-output model, to exclude the
second input from being affected by a nonlinearity, use the following
syntax:

m = nlhw(data,orders,['saturation''unitgain'],'deadzone')

In this case, the first input saturates and the output has an associated
deadzone nonlinearity.

Remarks Use the unitgain object to exclude specific input and output channels
from being affected by a nonlinearity in Hammerstein-Wiener models.

unitgain is a linear function y F x= () , where F(x)=x.

unitgain
Properties

unitgain does not have properties.

Examples For example, for a one-input and one-output model, to exclude the
output from being affected by a nonlinearity, use the following syntax:

m = nlhw(Data,Orders,'saturation','unitgain')

In this case, the input has a saturation nonlinearity.

If nonlinearities are absent in input or output channels, you can replace
unitgain with an empty matrix. For example, to specify a Wiener

2-440

unitgain

model with a sigmoid nonlinearity at the output and a unit gain at the
input, use the following command:

m = nlhw(Data,Orders,[],'sigmoid');

See Also deadzone

nlhw

saturation

sigmoidnet

2-441

view

Purpose Plot model characteristics using Control System Toolbox LTI Viewer
GUI

Syntax view(m)
view(m('n'))
view(m1,...,mN,Plottype)
view(m1,PlotStyle1,...,mN,PlotStyleN)

Description m is the output-input data to be graphed, given as any idfrd or idmodel
object. After appropriate model transformations, the Control System
Toolbox LTI Viewer opens. This allows bode, nyquist, impulse, step,
and zero/poles plots.

To compare several models m1,...,mN, use view(m1,...,mN). With
PlotStyle, the color, line style, and marker of each model can be
specified.

view(m1,'y:*',m2,'b')

Adding Plottype as a last argument specifies the type
of plot in which view is initialized. Plottype is any of
'impulse','step','bode','nyquist','nichols','sigma', or
'pzmap'. It can also be given as a cell array containing any collection of
these strings (up to 6) in which case a multiplot is shown.

view does not display confidence regions. For that, use bode, nyquist,
impulse, step, and pzmap.

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance
= . The model can also be described with a unit variance, using a
normalized noise source v:

2-442

view

• view(m) plots the characteristics of the transfer function G.

• view(m('n')) plots the characteristics of the transfer function HL
(ny inputs and ny outputs). The input channels have names v@yname,
where yname is the name of the corresponding output.

• If m is a time series, that is, nu = 0, view(m) plots the characteristics
of the transfer function HL.

• view(noisecnv(m)) plots the characteristics of the transfer function
[G H] (nu+ny inputs and ny outputs). The noise input channels have
names e@yname, where yname is the name of the corresponding
output.

• view(noisecnv(m,'norm')) plots the characteristics of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input
channels have names v@yname, where yname is the name of the
corresponding output.

view does not give access to all of the features of ltiview. Use

ml = ss(m), ltiview(Plottype,ml,...)

to reach these options.

See Also bode

impulse

nyquist

pzmap

step

2-443

wavenet

Purpose Class representing wavelet network nonlinearity estimator for
nonlinear ARX and Hammerstein-Wiener models

Syntax s=wavenet('NumberOfUnits',N)
s=wavenet(Property1,Value1,...PropertyN,ValueN)

Description wavenet is an object that stores the wavelet network nonlinear
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

s=wavenet('NumberOfUnits',N) creates a wavelet nonlinearity
estimator object with N terms in the wavelet expansion.

s=wavenet(Property1,Value1,...PropertyN,ValueN) creates
a wavelet nonlinearity estimator object specified by properties in
“wavenet Properties” on page 2-445.

Use evaluate(s,x) to compute the value of the function defined by
the wavenet object s at x.

Remarks Use wavenet to define a nonlinear function y F x= () , where y is scalar
and x is an m-dimensional row vector. The wavelet network function is
based on the following function expansion:

F x x r PL a f b x r Q cs s s() ()= − + −()() −() +1 1 1 …

+ −()() −()
+

a f b s x r Q c

a

sn sn sn

w1 gg b x r Q c

a wg b w x

w w

wn wn

1 1−()() −() +

+

…

 −−()() −() +r Q c dwn

where f is a scaling function and g is the wavelet function. P and Q
are m-by-p and m-by-q projection matrices, respectively. The projection
matrices P and Q are determined by principal component analysis of
estimation data. Usually, p=m. If the components of x in the estimation
data are linearly dependent, then p<m. The number of columns of Q, q,

2-444

wavenet

corresponds to the number of components of x used in the scaling and
wavelet function.

When used in a nonlinear ARX model, q is equal to the size of the
NonlinearRegressors property of the idnlarx object. When used in a
Hammerstein-Wiener model, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, as, bs, aw, and bw are scalars. Parameters with the s subscript are
scaling parameters, and parameters with the w subscript are wavelet
parameters.

L is a p-by-1 vector.

cs and cw are 1-by-q vectors.

The scaling function f and the wavelet function g are both radial
functions, as follows:

f x e

g x x x x e

x x

x x

()

() (() - ’)

- . ’

- . ’

=

=

0 5

0 5 dim

wavenet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(w)
% Get value of NumberOfUnits property
w.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

h set(w, 'LinearTerm', 'on')

2-445

wavenet

The first argument to set must be the name of a MATLAB variable.

Property Name Description

NumberOfUnits Integer specifies the number of nonlinearity units in the
expansion.
Default='auto'.

For example:

wavenet('NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'— (Default) Estimates the vector L in the expansion.

• 'off' — Fixes the vector L to zero and omits the term

x r PL−() .

For example:

wavenet(H,'LinearTerm','on')

Parameters Structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• ScalingDilation: ns-by-1 matrix containing the values
bs_k.

• WaveletDilation: nw-by-1 matrix containing the values
bw_k.

2-446

wavenet

Property Name Description

• ScalingTranslation: ns-by-q matrix containing the values
cs_k.

• WaveletTranslation: nw-by-q matrix containing the values
cw_k.

• ScalingCoef: ns-by-1 vector containing the values as_k.

• WaveletCoef: nw-by-1 vector containing the values aw_k.

• OutputOffset: scalar d.

Options Structure containing the following fields that affect the initial
model:

• FinestCell: Integer or string specifying the minimum
number of data points in the smallest cell. A cell is the area
covered by the significantly nonzero portion of a wavelet.
Default: 'auto', which computes the value from the data.

• MinCells: Integer specifying the minimum number of cells
in the partition. Default: 16.

• MaxCells: Integer specifying the maximum number of cells
in the partition. Default: 128.

• MaxLevels: Integer specifying the maximum number of
wavelet levels. Default: 10.

• DilationStep: Real scalar specifying the dilation step size.
Default: 2.

• TranslationStep: Real scalar specifying the translation
step size. Default: 1.

Algorithm When the idnlarx property Focus is 'Prediction', wavenet uses
a fast, noniterative technique for estimating parameters. Successive
refinements after the first estimation use an iterative algorithm.

2-447

wavenet

When the idnlarx property Focus='Simulation', wavenet uses an
iterative technique for estimating parameters.

To always use noniterative or iterative algorithm, specify the
IterWavenet algorithm property of the idnlarx class.

Examples Use wavenet to specify the nonlinear estimator in nonlinear ARX and
Hammerstein-Wiener models. For example:

m=nlarx(Data,Orders,wavenet);

See Also nlarx

nlhw

2-448

zpk

Purpose Convert linear model to Control System Toolbox state-space LTI models

Syntax sys = zpk(mod)
sys = zpk(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.

sys is returned as a zpk LTI model object. The noise input channels in
mod are treated as follows: consider a model mod with both measured
input channels u (nu channels) and noise channels e (ny channels) with
covariance matrix

where L is a lower triangular matrix. Note that mod.NoiseVariance
= . The model can also be described with a unit variance, using a
normalized noise source v.

Both measured input channels u and normalized noise input channels v
in mod are input channels in sys. The noise input channels belong to
the InputGroup 'Noise', while the others belong to the InputGroup
'Measured'. The names of the noise input channels are given by
v@yname, where yname is the name of the corresponding output channel.
This means that the LTI object realizes the transfer function [G HL].

To transform only the measured input channels in sys, use

sys = zpk(mod('m')) or sys = zpk(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI
representation contains the transfer functions from the normalized
noise sources v to the outputs, that is, HL. If the model mod has

2-449

zpk

both measured and noise inputs, sys = zpk(mod('n')) gives a
representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = zpk(mod(1,[3 4]))

If you want to describe [GH] or H (unnormalized noise), from e to y,
first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These
channels are assigned the names e@yname.

See Also frd

ss

tf

2-450

zpkdata

Purpose Zeros, poles, and gains of transfer function from linear model

Syntax [z,p,k] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and
nu input channels.

z is a cell array of dimension ny-by-nu. z{ky,ku} (note the curly braces)
contains the zeros of the transfer function from input ku to output ky.
This is a column vector of possibly complex numbers.

Similarly, p is an ny-by-nu cell array containing the poles.

k is a ny-by-nu matrix whose ky-ku entry is the transfer function gain of
the transfer function from input ku to output ky. Note that the transfer
function gain is the value of the leading coefficient of the numerator
when the leading coefficient of the denominator is normalized to 1. It
thus differs from the static gain. The static gain can be retrieved as Ks
= freqresp(m,0).

dz contains the covariance matrices of the zeros in the following
way: dz is a ny-by-nu cell array. dz{ky,ku} contains the covariance
information about the zeros of the transfer function from ku to ky. It is
a 3-D array of dimension 2-by-2-by-Nz, where Nz is the number of zeros.
dz{ky,ku}(:,:,kz) is the covariance matrix of the zero z{ky,ku}(kz),
so that the 1-1 element is the variance of the real part, the 2-2 element
is the variance of the imaginary part, and the 1-2 and 2-1 elements
contain the covariance between the real and imaginary parts.

dp contains the covariance matrices of the poles in the same way.

dk is a matrix containing the variances of the elements of k.

If m is a SISO model, adding an extra input argument 'v’ (for vector)
returns z and p as vectors rather than cell arrays.

Note that the zeros and the poles are associated with the different
channel combinations. To obtain the so-called transmission zeros, use
tzero.

2-451

zpkdata

The noise input channels in m are treated as follows: Consider a model m
with both measured input channels u (nu channels) and noise channels
e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance
= . The model can also be described with a unit variance, using a
normalized noise source v.

Then,

• zpkdata(m) returns the zeros and poles of G.

• zpkdata(m('n')) returns the zeros and poles of H (ny inputs and
ny outputs).

• If m is a time series, that is, nu = 0, zpkdata(m) returns the zeros
and poles of H.

• zpkdata(noisecnv(m)) returns the zeros and poles of the transfer
function [G H] (nu+ny inputs and ny outputs).

• zpkdata(noisecnv(m,'norm')) returns the zeros and poles of the
transfer function [G HL] (nu+ny inputs and ny outputs).

The procedure handles both models in continuous and discrete time.

Note that you cannot rely on information about zeros and poles at the
origin and at infinity for discrete-time models. (This is a somewhat
confusing issue anyway.)

Algorithm The poles and zeros are computed using ss2zp. The covariance
information is computed using the Gauss approximation formula, using
the parameter covariance matrix contained in m. When the transfer
function depends on the parameters, numerical differentiation is

2-452

zpkdata

applied. The step sizes for the differentiation are determined in the
M-file nuderst.

2-453

zpkdata

2-454

3

Block Reference

Data Representation (p. 3-2) Blocks for transferring data between
System Identification Toolbox and
Simulink software

Linear Model Identification (p. 3-3) Blocks for estimating linear models
during simulation in Simulink
software

Simulation and Prediction (p. 3-4) Blocks for simulating and predicting
linear and nonlinear model output in
Simulink software

3 Block Reference

Data Representation

IDDATA Sink Export iddata object to MATLAB
workspace

IDDATA Source Import iddata object from MATLAB
workspace

3-2

Linear Model Identification

Linear Model Identification

AR Estimator Estimate parameters of AR model
from scalar time series in Simulink
software returning idpoly object

ARMAX Estimator Estimate parameters of ARMAX
model from SISO data in Simulink
software returning idpoly object

ARX Estimator Estimate parameters of ARX model
from SISO data in Simulink software
returning idpoly object

BJ Estimator Estimate parameters of Box-Jenkins
model from SISO data in Simulink
software returning idpoly object

OE Estimator Estimate parameters of
Output-Error model from SISO
data in Simulink software returning
idpoly object

PEM Estimator Estimate generic input-output
polynomial model parameters
from SISO data using iterative
prediction-error minimization
method

3-3

3 Block Reference

Simulation and Prediction

IDMODEL Model Simulate idmodel object in Simulink
software

IDNLARX Model Simulate nonlinear ARX model in
Simulink software

IDNLGREY Model Simulate nonlinear grey-box model
in Simulink software

IDNLHW Model Simulate Hammerstein-Wiener
model in Simulink software

3-4

4

Blocks — Alphabetical List

AR Estimator

Purpose Estimate parameters of AR model from scalar time series in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The AR Estimator block estimates the parameters of an AR model for a
scalar time series and returns the model as an idpoly object. A time
series is time-domain data consisting of one or more outputs y(t) and
no corresponding measured input.

For information about the default algorithm settings used for model
estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The AR model is defined, as follows:

y t a y t a y t n e tn aa
() () () ()+ − + + − =1 1 �

where

• y(t) is the output at time t.

• a an1� are the parameters to be estimated from the data.

• na is the number of poles of the system.

• y t y t na() ()− −1 … are the previous outputs on which the current
output depends.

• e(t) is white-noise disturbance.

4-2

AR Estimator

The AR model can be written compactly for a single output y(t) using
the following notation:

A q y t e t() () ()=

where A q a q a qn
n

a
a() = + + +− −1 1

1 � and q−1 is the backward shift

operator defined by q u t u t− = −1 1() () .

The following block diagram shows the AR model structure.

Input Time-series signal.

Output The AR Estimator block outputs a sequence of multiple models (idpoly
objects), estimated at regular intervals during the simulation. TheData
window field in the block parameter dialog box specifies the number of
data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

4-3

AR Estimator

Dialog
Box

Orders of model [na]

Integer na corresponds to the number of a parameters (poles)
in the AR model.

How often to update model (samples)
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

Sample time
Sampling time for the model.

4-4

AR Estimator

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Prediction horizon
Specifies the forward-prediction horizon for computing the
response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the AR Estimator block in a
Simulink model.

1 Generate sample input and output data.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);

2 Create a new Simulink model, as follows:

4-5

AR Estimator

• Add the IDDATA Source block and specify y in the Iddata object
field of the IDDATA Source block parameter dialog box.

• Add the AR Estimator block to the model and accept default block
parameter values.

• Connect the Output port of the IDDATA Source block to the y port
of the AR Estimator block.

3 Run the estimation.

The estimated models appear in the MATLAB Command Window
every 25 samples.

See Also Related Commands

ar

idpoly

Topics in the System Identification Toolbox User’s Guide

“Time Series Model Identification”

4-6

ARMAX Estimator

Purpose Estimate parameters of ARMAX model from SISO data in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The ARMAX Estimator block estimates the parameters of a single-input
and single-output ARMAX model and returns the model as an idpoly
object.

For information about the default algorithm settings used for model
estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The ARMAX model is defined, as follows:

y t a y t a y t n

b u t b u t n e t c e
n a

n b

a

b

() () ()

() () () (

+ − + + − =

− + + − + +
1

1 1

1

1

�

� tt c e t nn cc
− + + −1) ()�

where

• y(t) is the output at time t .

• a an1� , b bn1� , and c cn1� are the parameters to be estimated.

• na is the number of poles of the system.

• nb − 1 is the number of zeros of the system.

• nc is the number of previous error terms on which the current output
depends.

4-7

ARMAX Estimator

• nk is the number of input samples that occur before the inputs
affecting the current output.

• y t y t na() ()− −1 … are the previous outputs on which the current
output depends.

• u t n u t n nk k b() ()− − − +… 1 are the previous inputs on which the
current output depends.

• e t e t e t nc(), (), ()− −1 � are the white-noise disturbance values on
which the current output depends.

The ARMAX model can also be written in a compact way using the
following notation:

A q y t B q u t C q e t() () () () () ()= +

where

A q a q a q

B q b b q b q

C q c q

n
n

n
n

a
a

b
b

()

()

()

= + + +

= + + +

= +

− −

− − +

−

1

1

1
1

1 2
1 1

1

�

�

11 + −�a qn
n

c
c

and q−1 is the backward shift operator, defined by q u t u t− = −1 1() () .

The following block diagram shows the ARMAX model structure.

4-8

ARMAX Estimator

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

Output The ARMAX Estimator block outputs a sequence of multiple models
(idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

4-9

ARMAX Estimator

Dialog
Box

Orders of model [na nb nc nk]
Integers na, nb, nc, and nk specify the number of A, B, and C model
parameters and nk is input-output delay, respectively.

Calculate after how many points
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

Sample time
Sampling time for the model.

4-10

ARMAX Estimator

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the ARMAX Estimator block in a
Simulink model.

1 Generate sample input and output data.

u = sin([1:300]') + 0.6*(rand(300,1)-0.5);

4-11

ARMAX Estimator

y = cos(u) + 0.1*rand(300,1);
IODATA = iddata(y,u,1);

2 Create a new Simulink model, as follows.

Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

Add the ARMAX Estimator block to the model and set the model
orders to [4 4 4 0] and set the sample time to 1.

Connect the Input and Output ports of the IDDATA Source block to
the u and y ports of the ARMAX Estimator block, respectively. Set
the simulation end time to 300 seconds.

3 Run the simulation.

The estimated models display in the MATLAB Command Window
every 25 samples.

See Also Related Commands

armax

idpoly

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

4-12

ARX Estimator

Purpose Estimate parameters of ARX model from SISO data in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The ARX block uses least-squares analysis to estimate the parameters
of an ARX model and returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model
estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The ARX model is defined, as follows:

y t a y t a y t n b u t b u t n n e tn a n k ba b
() () () () () ()+ − + + − = − + + − − + +1 11 1 1� �

where

• y(t) is the output at time t .

• a an1� and b bn1� are the parameters to be estimated.

• na is the number of poles of the system.

• nb − 1 is the number of zeros of the system.

• nk is the number of input samples that occur before the inputs that
affect the current output.

• y t y t na() ()− −1 … are the previous outputs on which the current
output depends.

4-13

ARX Estimator

• u t n u t n nk k b() ()− − − +… 1 are the previous inputs on which the
current output depends.

• e(t) is a white-noise disturbance value.

The ARX model can also be written in a compact way using the
following notation:

A q y t B q u t n e tk() () () () ()= − +

where

A q a q a q

B q b b q b q

n
n

n
n

a
a

b
b

()

()

= + + +

= + + +

− −

− − +

1 1
1

1 2
1 1

�

�

and q−1 is the backward shift operator, defined by q u t u t− = −1 1() () .

The following block diagram shows the ARX model structure.

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

4-14

ARX Estimator

Output The ARX Estimator block outputs a sequence of multiple models
(idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

Dialog
Box

4-15

ARX Estimator

Orders of model [na nb nk]
Integers na, nb, and nk specify the number of A and B model
parameters and nk is input-output delay, respectively.

How often to update model [samples]
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

4-16

ARX Estimator

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the ARX Estimator block in a
Simulink model.

1 Specify the data from iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

• Add the ARX Estimator block to the model. Set the sample time in
the block to 0.1 seconds and the simulation end time to 30 seconds.

• Connect the Input and Output ports of the IDDATA Source block
to the u and y ports of the ARX Estimator block, respectively.

3 Run the simulation.

4-17

ARX Estimator

See Also Related Commands

arx

idpoly

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

4-18

BJ Estimator

Purpose Estimate parameters of Box-Jenkins model from SISO data in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The BJ Estimator block estimates the parameters of a Box-Jenkins
model, and returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model
estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The Box-Jenkins model is defined, as follows:

y t
B q
F q

u t n
C q
D q

e tk()
()
()

()
()
()

()= − +

where the coefficients of

B q b b q b q

F q f q f q

C q c q

n
n

n
n

b
b

f

f

()

()

()

= + + +

= + + +

= +

− − +

− −

−

1 2
1 1

1
1

1

1

1

�

�

11

1
11

+ +

= + + +

−

− −

�

�

c q

D q d q d q

n
n

n
n

c
c

d
d()

are the parameters being estimated, and q−1 is the backward shift

operator defined by q u t u t− = −1 1() () .

The following block diagram shows the Box-Jenkins model structure.

4-19

BJ Estimator

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

Output The BJ Estimator block outputs a sequence of multiple models (idpoly),
estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

4-20

BJ Estimator

Dialog
Box

Orders of model [nb nc nd nf nk]
Integers nb, nc, nd, and nf specify the number of B, C, D, and F
model parameters, respectively.

Integer nk specifies the input-output delay.

Calculate after how many points
Number of input data samples that specify the interval after
which to estimate a new model.

4-21

BJ Estimator

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of data window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

4-22

BJ Estimator

Examples This example shows how you can use the BJ Estimator block in a
Simulink model.

1 Specify the data in iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

• Add the BJ Estimator block to the model. Set the sample time in
the block to 0.1 seconds and the simulation end time to 30 seconds.

• Connect the Input and Output ports of the IDDATA Source block
to the u and y ports of the BJ Estimator block, respectively.

3 Run the simulation.

The estimated models appear in the MATLAB Command Window
every 25 samples.

See Also Related Commands

bj

idpoly

4-23

BJ Estimator

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

4-24

IDDATA Sink

Purpose Export iddata object to MATLAB workspace

Library System Identification Toolbox

Description The IDDATA Sink block exports an iddata object to the MATLAB
workspace.

Input

The first block input is the input of specified iddata object in the
MATLAB workspace. Similarly, the second block input is the output of
the specified iddata object.

Output

None.

Dialog Box

IDDATA Name
Name of the iddata object in the MATLAB workspace.

Sample Time (sec.)
Time interval (in seconds) between successive data samples.

4-25

IDDATA Sink

See Also IDDATA Source

4-26

IDDATA Source

Purpose Import iddata object from MATLAB workspace

Library System Identification Toolbox

Description The IDDATA Source block imports an iddata object from the MATLAB
workspace.

Input

None.

Output

The first block output is the input signal of the iddata object imported
from the MATLAB workspace.

The second block output is the output signal of this iddata object.

Dialog
Box

Iddata object
Name of the iddata object imported from the MATLAB
workspace.

4-27

IDDATA Source

The iddata object must contain only one experiment. For a
multiple-experiment object, use getexp(data,kexp) to specify
the experiment number kexp.

See Also IDDATA Sink

4-28

IDMODEL Model

Purpose Simulate idmodel object in Simulink software

Library System Identification Toolbox

Description The IDMODEL block simulates a linear model in the MATLAB
workspace.

Note For simulating nonlinear models, use the IDNLGREY,
IDNLARX, or IDNLHW Model blocks.

Input

Input signal to the model.

Output

Simulated output from the model.

Dialog
Box

4-29

IDMODEL Model

idmodel variable
Name of idmodel variable in the MATLAB workspace, which can
be an idpoly, idss, idgrey, idarx or idproc model object that
you estimated using System Identification Toolbox software.

This block supports both continuous-time and discrete-time
models with or without input-output delays.

Initial state (state space only)
Initial state vector.

(Default) 'z' (in quotation marks) specifies zero, which
corresponds to a simulation starting from a state of rest.

Enter 'm' to use the internal initial states of the model, stored by
the idss or idgrey model property X0.

To specify your own initial states, enter one of the following:

• Enter known initial states for a state-space model directly, as a
numerical vector.

Note For non-state-space models, the initial conditions are 0.

• Compute the initial states using the findstates(idmodel)
command to get the initial state values that produce the best fit
between the model output and the measured output signal.

For example, if the data set z and model m are already in the
MATLAB workspace, you can enter X0, such that:

X0 = findstates(m,z1)

Add noise
Select when you need to add noise, as specified by the model
property model.NoiseVariance and the matrices or polynomials
that determine the color of the additive noise.

4-30

IDMODEL Model

For continuous-time models, the ideal variance of the noise term
at any moment is infinite. In reality, you see a band-limited noise
that takes into account the natural time constants of the system.
You can interpret the resulting simulated output as filtered
using a low-pass filter with a pass-band that does not distort the
dynamics from the input.

Noise seed(s)
(Use when you select the Add noise check box.)

Enter an integer that specifies a seed that forces the simulation
to add the same noise to the output every time you simulate the
model. For more information about using seeds with functions
that generate random number sequences, see the rand reference
page in MATLAB documentation, for example.

See Also findstates(idmodel)

idmodel

4-31

IDNLARX Model

Purpose Simulate nonlinear ARX model in Simulink software

Library System Identification Toolbox

Description The IDNLARX Model block simulates a nonlinear ARX (idnlarx) model
for time-domain input and output data.

Input Input signal to the model.

Output Simulated output from the model.

Dialog
Box

Model
Name of idnlarx variable in the MATLAB workspace.

4-32

IDNLARX Model

Initial conditions
Specifies the initial states as one of the following:

• Input and output values: Specify the input and output
levels, as follows:

— Input level

If known, enter a vector of length equal to the number of
model inputs. If you enter a scalar, it is the signal value
for all inputs.

— Output level

If known, enter a vector of length equal to the number of
model’s outputs. If you enter a scalar, it is the signal value
for all outputs.

• State values: When selected, you must specify a vector of
length equal to the number of states in the model in the Vector
of state values field.

If you do not know the initial states, you can estimate these
states, as follows:

— To simulate around a given input level when you do not
know the corresponding output level, you can estimate
the equilibrium state values using the findop(idnlarx)
command.

For example, to simulate a model M about a steady-state
point where the input is 1 and the output is unknown, you
can enter X0, such that:

X0 = findop(M,'steady',1,NaN)

— To estimate the initial states that provide a best fit between
measured data and the simulated response of the model for
the same input, use the findstates(idnlarx) command.

4-33

IDNLARX Model

For example, to compute initial states such that the response
of the model M matches the output data in the data set z,
you can enter X0, such that:

X0 = findstates(M,z,[],'sim')

— To continue a simulation from a previous run, use the
simulated input-output values from the previous simulation
to compute the initial states X0 for the current simulation.

For example, suppose that firstSimData is a variable
that stores the input and output values from a previous
simulation. For a model M, you can enter X0, such that:

X0 = data2state(M,firstSimData)

Examples Example 1

In this example, you estimate a nonlinear ARX model from data and
compare the model output of the model to the measured output of the
system.

1 Load the sample data.

load twotankdata

2 Create a data object from sample data.

z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

3 Estimate a nonlinear ARX model.

mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

4 Build the following Simulink model using the IDDATA Source,
IDNLARX Model, and Scope blocks.

4-34

IDNLARX Model

5 Double-click the IDDATA Source block and enter the following into
the block parameter dialog box:

IDDATA Object: z1

Click OK.

6 Double-click the IDNLARX Model block and enter the following into
the block parameter dialog box:

• Model: mw1

• Initial conditions: Select Input and output values and accept
the default values.

7 Run the simulation.

Click the Scope block to view the difference between the measured
output and the model output. Use the Autoscale command to scale
the axes.

Example 2

In this example, you reduce the difference between the measured and
simulated responses. To achieve this, you use the findstates command
to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z1.

4-35

IDNLARX Model

x0 = findstates(mw1,z1,[],'simulation');

2 Set the Initial Conditions to State Values. Enter x0 in the
corresponding field.

3 Run the simulation.

See Also Related Commands

findop(idnlarx)

findstates(idnlarx)

idnlarx

Topics in the System Identification Toolbox User’s Guide

“Identifying Nonlinear ARX Models”

4-36

IDNLGREY Model

Purpose Simulate nonlinear grey-box model in Simulink software

Library System Identification Toolbox

Description

Simulates systems of nonlinear grey-box (idnlgrey) models.

Input

Input signal to the model.

Output

Output signal from the model.

Dialog
Box

IDNLGREY model
Name of idnlgrey variable in the MATLAB workspace.

Initial state
Specify the initial states as one of the following:

4-37

IDNLGREY Model

• 'z': Specifies zero, which corresponds to a system starting
from rest.

• 'm': Specifies the internal initial states of the model.

• Vector of size equal to the number of states in the idnlgrey
object.

• An initial state structure array. For information about creating
this structure, type help idnlgrey/sim in the MATLAB
Command Window.

See Also Related Commands

idnlgrey

Topics in the System Identification Toolbox User’s Guide

“Estimating Nonlinear Grey-Box Models”

4-38

IDNLHW Model

Purpose Simulate Hammerstein-Wiener model in Simulink software

Library System Identification Toolbox

Description The IDNLHW Model block simulates a Hammerstein-Wiener (idnlhw)
model for time-domain input and output data.

Input Input signal to the model.

Output Simulated output from the model.

Dialog
Box

Model
Name of the idnlhw variable in the MATLAB workspace.

Initial conditions
Specifies the initial states as one of the following:

4-39

IDNLHW Model

• Zero: Specifies zero, which corresponds to a simulation starting
from a state of rest.

• State values: When selected, you must specify a vector
of length equal to the number of states in the model in the
Specify a vector of state values field.

If you do not know the initial states, you can estimate these
states, as follows:

— To simulate around a given input level when you do
not know the corresponding steady-state output level,
you can estimate the equilibrium state values using the
findop(idnlhw) command.

For example, to simulate a model M about a steady-state
point where the input is 1 and the output is unknown, you
can enter X0, such that:

X0 = findop(M,'steady',1,NaN)

— To estimate the initial states such that the simulated
response of the model matches specified output data for the
same input, use the findstates(idnlhw).

For example, for the data set z and model m, you can enter
X0, such that:

X0 = findstates(m,z)

Examples Example 1

In this example, you estimate a Hammerstein-Wiener model from data
and compare the model output of the model to the measured output of
the system.

1 Load the sample data.

load twotankdata

2 Create a data object from sample data.

4-40

IDNLHW Model

z = iddata(y,u,0.2, ...
'Name','Two tank system',...
'Tstart',0);

3 Estimate a Hammerstein-Wiener model.

mhw1 = nlhw(z,[1 5 3],pwlinear,pwlinear);

4 Build the following Simulink model using the IDDATA Source,
IDNLHW Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into
the block parameter dialog box:

• IDDATA Object: z

Click OK.

6 Double-click the IDNLHW Model block and enter the following into
the block parameter dialog box:

• Model: mhw1

• Initial Conditions: Zero

7 Run the simulation.

Click the Scope block to view the difference between the measured
output and the model output. Use the Autoscale toolbar button to
scale the axes.

4-41

IDNLHW Model

Example 2

In this example, you reduce the difference between the measured and
simulated responses using suitable initial state values. To achieve this,
you use the findstates command to estimate an initial state vector for
the model from the data.

1 Estimate initial states from the data z:

x0 = findstates(mhw1,z,[],'maxiter',50);

2 Set the Initial Conditions to State Values. Enter x0 in the
corresponding field.

3 Run the simulation.

See Also Related Commands

findop(idnlhw)

findstates(idnlhw)

idnlhw

Topics in the System Identification Toolbox User’s Guide

“Identifying Hammerstein-Wiener Models”

4-42

OE Estimator

Purpose Estimate parameters of Output-Error model from SISO data in
Simulink software returning idpoly object

Library System Identification Toolbox

Description The OE block estimates the parameters of an Output-Error model, and
returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model
estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The output-error model is defined, as follows:

w t f w t f w t n b u t b u t n n

y t

n f n k bf b
() () () () ()

()

+ − + + − = − + + − − +

=
1 11 1 1� �

ww t e t() ()+

where

• w is the undisturbed output.

• y(t) is the output at time t.

• f fnf1� and b bnb1� are the parameters to be estimated.

• nf is the number of poles of the transfer function from the input to
the undisturbed output.

• nb + 1 is the number of zeros of the transfer function from the input
to the undisturbed output.

4-43

OE Estimator

• nk is the number of input samples that occur before the inputs that
affect the current output.

• u t n u t n nk k b() ()− − − +… 1 are the previous inputs on which the
current output depends.

• e(t) is a white-noise disturbance value.

The OE model can also be written in a compact way using the following
notation:

y t
B q
F q

u t n e tk()
()
()

() ()= − +

where

B q b b q b q

F q f q f q

n
n

n
n
b

b

f

f

()

()

= + + +

= + +

− − +

− −

1 2
1 1

1
11

�

�

and q−1
is the backward shift operator, defined by q u t u t− = −1 1() () .

The following block diagram shows the ARX model structure.

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

4-44

OE Estimator

Output The OE Estimator block outputs a sequence of multiple models
(idpoly), estimated at regular intervals during the simulation.

The Length of Data window field in the block parameter dialog
box specifies the number of data samples to use for estimation, as the
simulation progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

Dialog
Box

Orders of model [nb nf nk]
Integers nb, nf, and nk specify the number of B and F model
parameters and nk is the input-output delay, respectively.

4-45

OE Estimator

How often to update model
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

4-46

OE Estimator

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the OE Estimator block in a
Simulink model.

1 Specify the data from iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

• Add the OE Estimator block to the model. Set sample time in the
block to 0.1 seconds and the simulation end time to 30 seconds.

• Connect the Input and Output ports of the IDDATA Source block
to the u and y ports of the OE Estimator block, respectively.

3 Run the simulation.

The estimated models appear in the MATLAB Command Window
every 25 samples.

4-47

OE Estimator

See Also Related Commands

oe

idpoly

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

4-48

PEM Estimator

Purpose Estimate generic input-output polynomial model parameters from SISO
data using iterative prediction-error minimization method

Library System Identification Toolbox

Description The PEM Estimator block estimates linear input-output polynomial
models in Simulink software.

For information about the default algorithm settings used for model
estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The input-output polynomial structure is defined, as follows:

Ay t
B
F

u t Nk
C
D

e t() () ()= − +

where

• y(t) is the output at time t.

• A, B, F, C, and D are the parameters a ana1… , b bnb1� , f fnf1� ,

c cnc1� and d dnd1� to be estimated.

• e t() is a white-noise disturbance.

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

4-49

PEM Estimator

Second input: Output signal.

Output The PEM Estimator block outputs a sequence of multiple models
(idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

Dialog
Box

4-50

PEM Estimator

Orders of model [na nb nc nd nf nk]
Integers na, nb, nc, nd, nf, and nk, specify the number of A, B, C, D,
and Fmodel parameters nk is the input-output delay, respectively.

Calculate after how many points
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

4-51

PEM Estimator

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the PEM Estimator block in a
Simulink model.

1 Specify data in iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows.

Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

Add the PEM Estimator block to the model. Set the sample time in
the block to 0.1 seconds and the simulation end time to 30 seconds.

Connect the Input and Output ports of the IDDATA Source block to
the u and y ports of the PEM Estimator block, respectively.

3 Run the simulation.

4-52

PEM Estimator

The estimated models display in the MATLAB Command Window
every 25 samples.

See Also Related Commands

idpoly

pem

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

4-53

PEM Estimator

4-54

Index

IndexA
adaptive noise canceling 2-355
advanced algorithm options 2-17

E
estimating models

Focus 2-11

F
fixed parameter 2-14
Focus 2-11
frequency response function 2-409

G
Gauss-Newton direction 2-16

L
Levenberg-Marquardt 2-16

LimitError 2-15

M
MaxIter 2-15
MaxSize 2-13

R
robust criterion

LimitError 2-15

S
SearchMethod 2-16

T
Tolerance 2-15

Index-1

	toc
	Function Reference
	Data Processing
	Linear Model Identification
	Nonlinear Black-Box Model Identification
	ODE Parameter Estimation
	Recursive Techniques for Model Identification
	Model Analysis
	Simulation and Prediction
	GUI

	Functions – Alphabetical List
	Block Reference
	Data Representation
	Linear Model Identification
	Simulation and Prediction

	Blocks — Alphabetical List
	Index

